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Introduction 
Statistical analyses are a critical component of research. The analyses that are to be conducted for a specific research 
activity must be carefully thought out in advance of any data collection and be an integral component of the 
experimental design activities. This module reviews a number of statistical tests that have been useful for a variety 
of water quality projects conducted by the author. The field of statistical analyses is very large and offers a great 
variety of tools. It is always worthwhile to consult an expert in environmental statistical analyses to help identify the 
most helpful and powerful tests for a specific set of objectives, experimental capabilities, and budget. 
 
 
General Steps in the Analysis of Data 
The analysis of data requires at least three elements, quality control/quality assurance of the reported data, an 
evaluation of the sampling effort and methods (and associated expected errors), and finally, the statistical analysis of 
the information. Quality control and quality assurance basically involves the identification and proper handling of 
questionable data. When reviewing previously collected data, it is common to find obvious errors that are associated 
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with improper units or sampling locations. Other potential errors are more difficult to identify and correct. In some 
cases, the identification and rejection of “outliers” may result in the dismissal of rare data observations. 
 
Experimental design efforts are usually associated with activities conducted prior to sample collection. However, 
many attributes of experimental design can also be used when evaluating previously collected data. This is 
especially useful when organizing data into relevant groupings for more efficient analyses. In addition, adequate 
sampling efforts are needed to characterize the information to the desired levels of confidence and power.  
 
A general strategy in data analyses should include several phases and layers of analyses. Graphical presentations of 
the data (using exploratory data analyses) should be conducted initially. Simple to complex relationships between 
variables may be more easily identified through visual data presentations for most people, compared to only relying 
on descriptive statistical summaries. Of course, graphical presentations should be supplemented with statistical test 
data to quantify the significance of any patterns observed. The comparison of data from multiple situations 
(upstream and downstream of an outfall, summer vs. winter observations, etc.) is a very common experimental 
objective. Similarly, the use of regression analyses is also a very commonly used statistical tool. Trend 
investigations of water quality conditions with time are also commonly conducted.  
 
Experimental Design 
All sampling plans attempt to obtain certain information (usually average values, totals, ranges, etc.) of a large 
population by sampling and analyzing a much smaller sample. The first step in this process is to select the sampling 
plan and then to determine the appropriate number of samples needed. When evaluation previously collected data, it 
is often desirable and effective to organize the data according to a specific sampling plan (shown later). 
 
Many sampling plans have been well described in the environmental literature. Gilbert (1987) has defined the 
following four main categories, plus subcategories, of sampling plans: 
 
• Haphazard sampling. Samples are taken in a haphazard (not random) manner, usually at the convenience of the 
sampler when time permits. Especially common when the weather is pleasant. This is only possible with a very 
homogeneous condition over time and space, otherwise biases are introduced in the measured population 
parameters. It is therefore not recommended because of the difficulty of verifying the homogeneous assumption. 
This is the most common sampling strategy used when volunteers are used for sampling, unless the grateful agency 
is able to spend sufficient time to educate the volunteer samplers to the problems of this type of sampling and to 
specify a more appropriate sampling strategy. 
 
• Judgment sampling. This strategy is used when only a specific subset of the total population is to be evaluated, 
with no desire to obtain “universal” characteristics. The target population must be clearly defined (such as during 
wet weather conditions only) and sampling is conducted appropriately. This could be the first stage of later, more 
comprehensive, sampling of other target population groups (multistage sampling). 
 
• Probability sampling. Several subcategories of probability sampling have been described: 
 

- simple random sampling. Samples are taken randomly from the complete population. This usually results 
in total population information, but it is usually inefficient as a greater sampling effort may be required 
than if the population was sub-divided into distinct groups. Simple random sampling doesn’t allow 
information to be obtained for trends or patterns in the population. This method is used when there is no 
reason to believe that the sample variation is dependent on any known or measurable factor.  
 
- stratified random sampling. This may the most appropriate sampling strategy for most receiving water 
studies, especially if combined with an initial limited field effort as part of a multistage sampling effort. 
The goal is to define strata that results in little variation within any one strata, and great variation between 
different strata. Samples are randomly obtained from several population groups that are assumed to be 
internally more homogeneous than the population as a whole, such as separating an annual sampling effort 
by season, lake depth, site location, habitat category, rainfall depth, land use, etc. This results in the 
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individual groups having smaller variations in the characteristics of interest than in the population as a 
whole. Therefore, sample efforts within each group will vary, depending on the variability of 
characteristics for each group, and the total sum of the sampling effort may be less than if the complete 
population was sampled as a whole. In addition, much additional useful information is likely if the groups 
are shown to actually be different.  
 
- multistage sampling. One type of multistage sampling commonly used is associated with the required 
subsampling of samples obtained in the field and brought to the laboratory for subsequent splitting for 
several different analyses. Another type of multistage sampling is when an initial sampling effort is used to 
examine major categories of the population that may be divided into separate clusters during later sampling 
activities. This is especially useful when reasonable estimates of variability within a potential cluster is 
needed for the determination of the sampling effort for composite sampling. These variability 
measurements may need to be periodically re-verified during the monitoring program. 
 
- cluster sampling. Gilbert (1987) illustrates this sampling plan by specifically targeting specific population 
units that cluster together, such as a school of fish or clump of plants. Every unit in each randomly selected 
cluster can then be monitored.  
 
- systematic sampling. This approach is most useful for basic trend analyses, where evenly spaced samples 
are collected for an extended time. Evenly spaced sampling is also most efficient when trying to find 
localized hot spots that randomly occur over an area. Gilbert (1987) present guidelines for spacing of 
sampling locations for specific project objectives relating to the size of the hot spot to be found. Spatial 
gradient sampling is a systematic sampling strategy that may be worthy of consideration when historical 
information implies a aerial variation of conditions in a river or other receiving water. One example would 
be to examine the effects of a point source discharge on receiving sediment quality. A grid would be 
described in the receiving water in the discharge vicinity whose spacing would be determined by 
preliminary investigations. 

 
 • Search sampling. This sampling plan is used to find specific conditions where prior knowledge is available, such 
as the location of a historical (but now absence) waste discharger affecting a receiving water. Therefore, the 
sampling pattern is not systematic or random over an area, but stresses areas thought to have a greater probability of 
success. 
 
Box, et al. (1978) contains much information concerning sampling strategies, specifically addressing problems 
associated with randomizing the experiments and blocking the sampling experiments. Blocking (such as in paired 
analyses to determine the effectiveness of a control device, or to compare upstream and downstream locations) 
eliminates unwanted sources of variability. Another way of blocking is to conduct repeated analyses (such for 
different seasons) at the same locations. Most of the above probability sampling strategies should include 
randomization and blocking within the final sampling plans (as demonstrated in the following example and in the 
use of factorial experiments). 
 
Sample size 
An important aspect of any research is the assurance that the samples collected represent the conditions to be tested 
and that the number of samples to be collected are sufficient to provide statistically relevant conclusions. 
Unfortunately, sample numbers are most often not based on a statistically-based process and follow traditional “best 
professional judgment,” or are resource driven. The sample numbers should be equal between sampling locations if 
comparing station data (EPA 1983) and paired sampling should be conducted, if at all possible (the samples at the 
two comparison sites should be collected at the “same” time, for example), allowing for much more powerful paired 
statistical comparison tests. In addition, replicate subsamples should also be collected and then combined to provide 
a single sample for analysis for many types of ecosystem sampling. Various experimental design processes can be 
used that estimates the number of needed samples based on the allowable error, the variance of the observations, 
and the degree of confidence and power needed for each parameter (Burton and Pitt 2002). 
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Determination of Outliers 
Outliers in data collection can be recognized in the tails of the probability distributions. Observations that do not 
perfectly fit the probability distributions in the tails are commonly considered outliers. They can be either very low 
or very high values. These values always attract considerable attention because they don’t fit the mathematical 
probability distributions exactly and are usually assumed to be flawed and are then discarded. Certainly, these 
values (like any other suspect values) require additional evaluation to confirm that simple correctable errors 
(transcription, math, etc.) are not responsible. If no errors are found, then these values should be included in the data 
analyses as they represent rare conditions that may be very informative. 
 
Analytical results less than the practical quantification limit (PQL) or the method detection limit (MDL) need to be 
flagged, but the result (if greater than the instrument detection limit, or IDL) should still be used in most of the 
statistical calculations. In some cases, the statistical test procedures can handle some undetected values with 
minimal modifications. In most cases, however, commonly used statistical procedures behave badly with undetected 
values. In these cases, results less than the IDL should be treated according to Berthouex and Brown (1994). 
Generally, the statistical procedures should be used twice, once with the less than detection values (LDV) equal to 
zero, and again with the LDV equal to the IDL. This procedure will determine if a significant difference in 
conclusions would occur with handling the data in a specific manner. In all cases of substituting a single value for 
LDV, the variability is artificially reduced which can significantly affect comparison tests. It may therefore be best 
to use the actual instrument reported value for many statistical tests, even if it is below the IDL or MDL. This value 
may be considered a random value, but it is probably closer to the true value than a zero or other arbitrary value, 
plus it retains some aspects of the variability of the data sets. Of course, these values should not be “reported” in the 
project report, or to a regulatory agency, as they obviously do not meet the project QA/QC requirements.  
 
It is difficult to reject wet weather constituent observations solely because they are unusually high, as wet weather 
flows can easily have wide ranging constituent observations. High values should not automatically be considered as 
outliers and therefore worthy of rejection, but as rare and unusual observations that may shed some light on the 
problem.  
 
Selection of Statistical Procedures  
Most of the objectives of receiving water studies can be examined through the use of relatively few statistical 
evaluation tools. The following briefly outlines some simple experimental objectives and a selected number of 
statistical tests (and their data requirements) that can be used for data evaluation (Burton and Pitt 2002).  
 
Statistical Power 
Errors in decision making are usually divided into type 1 (α: alpha) and type 2 (β: beta) errors: 
  
 α (alpha) (type 1 error) - a false positive, or assuming something is true when it is actually false. An 
example would be concluding that a tested water was adversely contaminated, when it actually was clean. The most 
common value of α is 0.05 (accepting a 5% risk of having a type 1 error). Confidence is 1-α, or the confidence of 
not having a false positive. 
 
 β (beta) (type 2 error) - a false negative, or assuming something is false when it is actually true. An 
example would be concluding that a tested water was clean when it actually was contaminated. If this was an 
effluent, it would therefore be an illegal discharge with the possible imposition of severe penalties from the 
regulatory agency. In most statistical tests, β is usually ignored (if ignored, β is 0.5). If it is considered, a typical 
value is 0.2, implying accepting a 20% risk of having a type 2 error. Power is 1-β, or the certainty of not having a 
false negative. When evaluating data using a statistical test, power is the sensitivity of the test for rejecting the 
hypothesis. For an ANOVA test, it is the probability that the test will detect a difference amongst the groups if a 
difference really exists. 
 
Comparison Tests 
Probably the most common situation is to compare data collected from different locations, or seasons. Comparison 
of test with reference sites, of influent with effluent, of upstream to downstream locations, for different seasons of 
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sample collection, of different methods of sample collection, can all be made with comparison tests. If only two 
groups are to be compared (above/below; in/out; test/reference), then the two group tests can be effectively used, 
such as the simple Student’s t-test or nonparametric equivalent. If the data are collected in “pairs,” such as 
concurrent influent and effluent samples, or concurrent above and below samples, then the more powerful and 
preferred paired tests can be used. If the samples cannot be collected to represent similar conditions (such as large 
physical separation in sampling location, or different time frames), then the independent tests must be used. 
 
If multiple groupings are used, such as from numerous locations along a stream, but with several observations from 
each location; or at one location; or from one location, but for each season, then a one-way ANOVA is needed. If 
one has seasonal data from each of the several stream locations for multiple seasons, the a two-way ANOVA can be 
used to investigate the effects of location, season, and the interaction of location and season together. Three-way 
ANOVA tests can be used to investigate another dimension of the data (such as contrasting sampling methods or 
weather for the different seasons at each of the sampling locations), but that would obviously require substantially 
more data to represent each condition.  
 
There are various data characteristics that influence which specific statistical test can be used for comparison 
evaluations. The parametric tests require the data to be normally distributed and that the different data groupings 
have the same variance, or standard deviation (checked with probability plots and appropriate test statistics for 
normality, such as the Kolmogorov-Smirnov one-sample test, the chi-square goodness of fit test, or the Lilliefors 
test). If the data do not meet the requirements for the parametric tests, the data may be transformed to better meet 
the test conditions (such as taking the log10 of each observation and conducting the test on the transformed values). 
The non-parametric tests are less restrictive, but are not free of certain requirements. Even though the parametric 
tests have more statistical power than the associated non-parametric tests, they lose any advantage if inappropriately 
applied. If uncertain, then non-parametric tests should be used. 
 
A few example statistical tests (as available in SigmaStat, SPSS, Inc.) are indicated below for different comparison 
test situations: 
 
 • Two groups  
  Paired observations 
   Parametric tests (data require normality and equal variance) 
    - Paired Student’s t-test (more power than non-parametric tests) 
   Non-parametric tests 
    - Sign test (no data distribution requirements, some missing data  

  accommodated)  
    - Fiedman’s test (can accommodate a moderate number of “non-detectable”  

  values, but no missing values are allowed 
    - Wilcoxon signed rank test (more power than sign test, but requires 

  symmetrical data distributions) 
 
  Independent observations 
   Parametric tests (data require normality and equal variance) 
    - Independent Student’s t-test (more power than non-parametric tests) 
   Non-parametric tests 
    - Mann-Whitney rank sum test (probability distributions of the two data sets  

  must be the same and have the same variances, but do not have to be  
  symmetrical; a moderate number of “non-detectable” values can be  
  accommodated) 

 
• Many groups (use multiple comparison tests, such as the Bonferroni t-test, to identify which groups are  
   different from the others if the group test results are significant). 

  Parametric tests (data require normality and equal variance) 
   - One-way ANOVA for single factor, but for >2 “locations” (if 2 “locations, use  
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  Student’s t-test) 
   - Two-way ANOVA for two factors simultaneously at multiple “locations” 
   - Three-way ANOVA for three factors simultaneously at multiple “locations” 

- One factor repeated measures ANOVA (same as paired t test, except that there can be  
  multiple treatments on the same group)  
- Two factor repeated measures ANOVA (can be multiple treatments on two groups)  

 
  Non-parametric test 
   - Kurskal-Wallis ANOVA on ranks (use when samples are from non-normal populations  

  or the samples do not have equal variances). 
- Friedman repeated measures ANOVA on ranks (use when paired observations are  
  available in many groups). 

 
  Nominal observations of frequencies (used when counts are recorded in contingency tables) 
   - Chi-square (Χ2) test (use if more than two groups or categories, or if the number of  

  observations per cell in a 2X2 table are > 5). 
   - Fisher Exact test (use when the expected number of observations is <5 in any cell of a  

    2X2 table). 
 - McNamar’s test (use for a “paired” contingency table, such as when the same 

individual  
  or site is examined both before and after treatment) 

 
Data Associations and Model Building 
These activities are an important component of the “weight-of-evidence” approach used to identify likely cause and 
effect relationships. The following list illustrates some of the statistical tools (as available in SigmaStat and/or 
SYSTAT, SPSS, Inc.) that can be used for evaluating data associations and subsequent model building: 
  
 • Data Associations 

Simple 
  - Pearson Correlation (residuals, the distances of the data points from the regression line,  

  must be normally distributed. Calculates correlation coefficients between all possible  
  data variables. Must be supplemented with scatterplots, or scatter plot matrix, to  
  illustrate these correlations. Also identifies redundant independent variables for  
  simplifying models). 
- Spearman Rank Order Correlation (a non-parametric equivalent to the Pearson test). 

 
  Complex (typically only available in advanced software packages) 
   - Hierarchical Cluster Analyses (graphical presentation of simple and complex inter- 

  relationships. Data should be standardized to reduce scaling influence. Supplements  
  simple correlation analyses). 

   - Principal Component Analyses (identifies groupings of parameters by factors so that  
  variables within each factor are more highly correlated with variables in that factor than  
  with variables in other factors. Useful to identify similar sites or parameters).  

 
 • Model building/equation fitting (these are parametric tests and the data must satisfy various assumptions  

   regarding behavior of the residuals) 
  Linear equation fitting (statistically-based models) 
   - Simple linear regression (y=b0+b1x, with a single independent variable, the slope term,  

  and an intercept. It is possible to simplify even further if the intercept term is not  
  significant). 

   - Multiple linear regression (y=b0+b1x1+b2x2+b3x3+…+bkxk, having k independent  
  variables. The equation is a multi-dimensional plane describing the data). 

   - Stepwise regression (a method generally used with multiple linear regression to assist in  
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  identifying the significant terms to use in the model.)  
   - Polynomial regression (y=b0+b1x1+b2x2+b3x3+…+bkxk, having one independent 
variable  

  describing a curve through the data). 
  Non-linear equation fitting (generally developed from theoretical considerations) 
   - Nonlinear regression (a nonlinear equation in the form: y=bx, where x is the  

  independent variable. Solved by iteration to minimize the residual sum of squares). 
 
 • Data Trends  
  - Graphical methods (simple plots of concentrations versus time of data collection).  

 - Regression methods (perform a least-squares linear regression on the above data plot and  
   examine ANOVA for the regression to determine if the slope term is significant. Can be   
   misleading due to cyclic data, correlated data, and data that are not normally distributed).  

  - Mann-Kendall test (a nonparametric test that can handle missing data and trends at multiple  
  stations. Short-term cycles and other data relationships affect this test and must be corrected).  

  - Sen’s estimator of slope (a nonparametric test based on ranks closely related to the Mann- 
  Kendall test. It is not sensitive to extreme values and can tolerate missing data). 

  - Seasonal Kendall test (preferred over regression methods if the data are skewed, serially  
  correlated, or cyclic. Can be used for data sets having missing values, tied values, censored  
  values, or single or multiple data observations in each time period. Data correlations and  
  dependence also affect this test and must be considered in the analysis). 

 
 
Exploratory Data Analyses 
Exploratory data analyses (EDA) is an important tool to quickly review available data before a specific data 
collection effort is initiated. It is also an important first step in summarizing collected data to supplement the 
specific data analyses associated with the selected experimental designs. A summary of the data’s variation is most 
important and can be presented using several simple graphical tools. The Visual Display of Quantitative Information 
(Tufte 1983) is a beautiful book with many examples of how to and how not to present graphical information. 
Envisioning Information, also by Tufte (1990) supplements his earlier book. Another important reference for basic 
analyses is Exploratory Data Analysis (Tukey 1977) which is the classic book on this subject and presents many 
simple ways to examine data to find patterns and relationships. Cleveland (1993 and 1994) has also published two 
books related to exploratory data analyses: Visualizing Data, and The Elements of Graphing Data. The basic plots 
described below can obviously be supplemented by many others presented in these books. Besides plotting of the 
data, exploratory data analyses should always include corresponding statistical test results, if available.  
 
Basic Data Plots 
There are several basic data plots that need to be prepared as data is being collected and when all of the data is 
available. These plots are basically for QA/QC purposes and to demonstrate basic data behavior. These basic plots 
include: time series plots (data observations as a function of time), control plots (generally the same as time series 
plots, but using control samples and with standard deviation bands), probability plots (described below), scatter 
plots (described below), and residual plots (needed for any model building activity, especially for regression 
analyses).  
 
Probability Plots 
The most basic exploratory data analysis method is to prepare a probability plot of the available data. The plots 
indicate the possible range of the values expected, their likely probability distribution type, and the data variation. It 
is difficult to recommend another method that results in so much information using the data available. Histograms, 
for example, cannot accurately indicate the probability distribution type very accurately, but they more clearly 
indicate multi-modal distributions.  
 
The values and corresponding probability positions are plotted on special normal-probability paper. This paper has a 
y-axis whose values are spread out for the extreme small and large probability values. When plotted on this paper, 



 
 

9

the values form a straight line if they are Normally distributed (Gaussian). If the points do not form an acceptably 
straight line, they can then be plotted on log-normal probability paper (or the data observations can be log 
transformed and plotted on normal probability paper). If they form a straight line on the log-normal plot, then the 
data is log-normally distributed. Other data transformations are also possible for plotting on normal-probability 
paper, but these two (normal and log-normal) usually are sufficient for most receiving water analyses.  
 
Figures 1 and 2 are probability plots of stormwater data from the National Stormwater Quality Database (NSQD) 
(Maestre and Pitt 2005). These plots are for all conditions combined and represent several thousand observations. In 
most cases, it is obvious that normal probability plots do not indicate normal distributions, except for pH (which is 
already log-transformed). However, Figure 2 plots are log-normal probability plots and generally show much better 
normal distributions, as is common for stormwater data. However, some extreme values are still obviously not 
represented by log-normal probability distributions. 
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Figure 1. Probability plots of NSQD data (Maestre and Pitt 2005). 
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Figure 2. Log-probability plots of NSQD data (Maestre and Pitt 2005). 
 
 
Figure 3 shows three types of results that can be observed when plotting pollutant reduction observations on 
probability plots, using data collected at the Monroe St. wet detention pond in Madison, WI, by the USGS and the 
WI DNR. Figure 3a for suspended solids (particulate residue) shows that SS are highly removed over a wide range 
of influent concentrations, ranging from 20 to over 1,000 mg/L. A simple calculation of percentage reduction would 
not show this consistent removal over the wide range. In contrast, Figure 3b for total dissolved solids (filtered 
residue) shows poor removal of TDS for all concentration conditions, as expected for this wet detention pond. The 
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percentage removal for TDS would be close to zero and no additional surprises are indicated on this plot. Figure 3c, 
however, shows a wealth of information that would not be available from simple statistical numerical summaries. In 
this plot, filtered COD is seen to be poorly removed for low concentrations (less than about 20 mg/L, but the 
removal increases substantially for higher concentrations. Although not indicated on these plots, the rank order of 
concentrations were similar for both influent and effluent distributions for all three pollutants.  
 
 
 

 
 

 

 

 
Figure 3. Influent and effluent observations for suspended solids, dissolved solids, and filtered COD at the 
Monroe St., Madison, WI, stormwater detention pond.  
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Generally, water quality observations do not form a straight line on normal probability paper, but do (at least from 
about the 10 to 90 percentile points) on log-normal probability paper. This indicates that the samples generally have 
a log-normal distribution and many parametric statistical tests can probably be used, but only after the data is log-
transformed. These plots indicate the central tendency (median) of the data, along with their possible distribution 
type and variance (the steeper the plot, the smaller the COV and the flatter the slope of the plot, the larger the COV 
for the data). Multiple data sets can also be plotted on the same plot (such as for different sites, different seasons, 
different habitats, etc.) to indicate obvious similarities (or differences) in the data sets. Most statistical methods used 
to compare different data sets require that the sets have the same variances, and many require normal distributions. 
Similar variances would be indicated by generally parallel plots of the data on the probability paper, while normal 
distributions would be reflected by the data plotted in a straight line of normal probability paper.  
 
Probability plots should be supplemented with standard statistical tests that determine if the data is normally 
distributed. These tests, at least some available in most software packages, include the Kolmogorov-Smirnov one-
sample test, the chi-square goodness of fit test, and the Lilliefors variation of the Kolmogorov-Smironov test. They 
basically are paired tests comparing data points from the best-fitted normal curve to the observed data. The 
statistical tests may be visualized by imagining the best-fitted normal curve data and the observed data plotted on 
normal probability paper. If the observed data crosses the fitted curve data numerous times, it is much likely to be 
normally distributed than if it only crossed the fitted curve a few times.  
 
Digidot Plot 
Berthouex and Brown (1994) point out that since the best way to display data is with a plot, it makes little sense to 
present the data in a table. They highly recommend a digidot plot, developed by Hunter (1988) based on Tukey 
(1977), as a basic presentation of characterization data. This plot indicates the basic distribution of the data, shows 
changes with time, and presents the actual values, all in one plot. A data table is therefore not needed in addition to 
the digidot plot. A stem and leaf plot of the data is presented as the y-axis and the data are presented in a time series 
(in the order of collection) along the x-axis. Figure 4 is an example of a digidot plot, as presented by Berthouex and 
Brown (1994). The stem and leaf plot is constructed by placing the last digit of the value on the y-axis between the 
appropriate tic marks. In this example, the value 47 is represented with a 7 placed in the division between 45 and 
50. Similarly, 33 is represented with a 3 placed in the division between 30 and 35. Values from 30 to 34 are placed 
between the 30 and 35 tic marks, while values from 35 to 39 are placed between the 35 and 40 tic marks. 
Simultaneously, the values are plotted in a time series in the order of collection. This plot can therefore be 
constructed in real time as the data is collected and obvious trends with time can be noted. This plot also presents 
the actual numerical data that can also be used in later statistical analyses. 
 

 
Figure 4. Digidot Plot (Berthouex and Brown 1994). 
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Scatterplots 
According to Berthouex and Brown (1994), the majority of the graphs used in science are scatterplots. They stated 
that these plots should be made before any other analyses of the data is performed. Scatterplots are typically made 
by plotting the primary variable (such as a water quality constituent) against a factor that may influence its value 
(such as time, season, flow, another constituent like suspended solids, etc.). Figure 5 is a scatterplot showing COD 
values plotted against rain depth to investigate the possibility of a “first-flush,” where higher concentrations are 
assumed to be associated with small runoff events (Pitt 1985). In this example, the smallest rains appear to have the 
highest COD concentrations associated with them, but the distribution of values is very wide. This may simply be 
associated with the much greater number of events observed having small rains and an increased likelihood of 
events having unusual observations to occur when more observations are made. When many data are observed for 
many sites, generally smaller rains do seem to be associated with the highest concentrations observed, but it is not a 
consistent pattern.  
 

 
Figure 5. Scatterplot for Bellevue, Washington, COD stormwater concentrations, by rain depth (Pitt 1985). 
 
 
Grouped scatterplots (miniatures) of all possible combinations of constituents can be organized as in a correlation 
matrix (Figure 6, Cleveland 1994). This arrangement allows obvious relationships to be easily seen, and even 
indicates if the relationships are straight-lined, or are curvilinear. In this example, the highest ozone values occur on 
days having the highest temperatures, and the lowest ozone concentrations occur on days having brisk winds and 
low temperatures. Figure 7 contains several scatterplots of NSQD data showing poor correlation of residential area 
stormwater concentration with rain depth (Maestre and Pitt 2005). Figure 8 are scatterplots used in QA/QC analyses 
of NSQD data showing reasonable relationships between constituents. In these cases, most of the dissolved copper 
and zinc concentrations are less than the concurrent total concentrations, as expected. Similarly, BOD5 is smaller 
than COD and ammonia is less than total Kjeldahl nitrogen values. Initially, several data sets were plotted with 
unreasonable relationships and review of the data indicated transcription errors that were corrected, for example. 
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Figure 6. Grouped scatterplot for ozone, solar radiation, temperature, and wind speed (Cleveland 1994). 
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Figure 7. Scatterplots of NSQD data showing poor correlation of residential area stormwater 
concentration with rain depth (Maestre and Pitt 2005). 
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Figure 8. Scatterplots used in QA/QC analyses of NSQD data showing reasonable relationships 
between constituents (Maestre and Pitt 2005). 
 
 
Grouped Box and Whisker Plots 
Another primary exploratory data analysis tool, especially when differences between sample groups are of interest, 
is the use of grouped box and whisker plots. Examples of their use include examining different sampling locations 
(such as above and below a discharge), influent and effluent of a treatment process, different seasons, etc. These 
plots indicate the range and major percentile locations of the data, as shown on Figure 9 (Pitt 1985). In this example, 
seasonal groupings of stormwater quality observations for COD (Chemical Oxygen Demand) from Bellevue, 
Washington, were plotted to indicate obvious differences in the values. If the 75 and 25 percentile lines of the boxes 
do not overlap on different box and whisker plots, then the data groupings are likely significantly different (at least 
at the 95% level). When large numbers of data sets are plotted using box and whisker plots, the relative overlapping 
(or separation) of the plots can be used to identify possible groupings of the separate sets. In this case, there are no 
clear significant differences, but the summer season appears to have most of the highest concentrations observed.  
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Figure 9. Grouped box and whisker plot for Bellevue, Washington, COD stormwater concentrations, by 
season (Pitt 1985). 
 
 
To supplement the visual presentation with the grouped box and whisker plots, a one-way ANOVA test (or the 
Kurskal-Wallis ANOVA on ranks test) should be conducted to determine if there is any statistically significant 
difference between the different boxes on the plot. ANOVA doesn’t specifically identify which sets of data are 
different from any other, however. A multiple comparison procedure (such as the Bonferroni t-test) can be used to 
identify significant differences between all cells if the ANOVA finds that a significance difference exists. Both of 
these tests (ANOVA and Bonferroni t-test) are parametric tests and require that the data be normally distributed. It 
may therefore be necessary to perform a log-transformation on the raw data. These tests will identify differences in 
sample groupings, but similarities (to combine data) are probably also important to know.  
 
Figure 10 is a grouped box and whisker plot that shows significant differences in fluorescence values for groups of 
source waters. This was used in the inappropriate discharge study conducted by the Center for Watershed Protection 
and Pitt (2004) to distinguish groups of contaminated waters from clean water sources. 
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Figure 10. Grouped box and whisker plot indicating significant differences in fluorescence values 
for groups of source waters (CWP and Pitt 2004).  
 
 
Comparing Multiple Sets of Data with Group Comparison Tests 
Making comparisons of data sets are fundamental objectives of many receiving water investigations. Different 
habitats and seasons can produce significant affects on the observations. The presence of influencing factors, such 
as pollutant discharges or control practices, also affect the data observations. Berthouex and Brown (1994) and 
Gilbert (1987) present excellent summaries of the most common statistical tests that are used for these comparisons 
in environmental investigations. The significance of the test results (the α value, the confidence factor, along with 
the β value, the power factor) will indicate the level of confidence and power that the two sets of observations are 
the same. In most cases, an α level of less than 0.05 has been traditionally used to signify significant differences 
between two sets of observations, although this is an arbitrary criterion. In most cases, β is ignored (resulting in a 
default value of 1-β of 0.5), although some use a 1-β value of 0.8. An α value of 0.05 implies that the interpretation 
will be in error an average of 1 in 20 times. In some cases, this may be too conservative, while in others (such as 
where health and welfare implications are involved), it may be too liberal. The selection of the critical α value 
should be decided beforehand, while the calculated values for α should always be presented in the data evaluation 
(not simply stating that the results were significant or not significant at the 0.05 level, as is common). Even if the α 
level is significant, the magnitude of the difference, such as the pollutant reduction, may not be very important. The 
importance of the level of pollutant reductions should also be graphically presented using grouped box plots 
indicating the range and variations of the concentrations at each of the sampling locations, as described previously.  
 
Comparison tests are divided into simple comparison tests between two groups (such as Student’s t test) and tests 
that examine larger numbers of groups and interactions (such as Analysis of Variance Tests, or ANOVA).  
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Simple Comparison Tests with Two Groups 
The main types of simple comparison tests are separated into independent and paired tests. These can be further 
separated into tests that require specific probability distribution characteristics (parametric tests) and tests that do 
not have as many restrictions based on probability distribution characteristics of the data (nonparametric data). If the 
parametric test requirements can be met, then they should be used as they have more statistical power. However, if 
information concerning the probability distributions is not available, or if the distributions do not behave correctly, 
then the somewhat less powerful nonparamteric tests should be used. Similarly, if the data gathering activity can 
allow for paired observations, then they should be used preferentially over independent tests.  
 
In many cases, observations cannot be related to each other, such as a series of observations at two locations during 
all of the rains during a season. Unless the sites are very close together, the rains are likely to vary considerably at 
the two locations, disallowing a paired analysis. However, if data can be collected simultaneously, such as at 
influent and effluent locations for a (rapid) treatment process, paired tests can be used to control all factors that may 
influence the outcome, resulting in a more efficient statistical analysis. Paired experimental designs ensure that 
uncontrolled factors basically influence both sets of data observations equally (Berthouex and Brown 1994). 
 
The parametric tests used for comparisons are the Student’s t-tests (both independent and paired t-tests). All 
statistical analyses software and most spreadsheet programs contain both of these basic tests. These tests require that 
the variances of the sample sets be the same and are constant over the range of the values. These tests also require 
that the probability distributions be Gaussian (Normal). Transformations can be used to modify the data sets to these 
conditions. Log-transformations can be used to produce Gaussian distributions of most water quality data. Square 
root transformations are also commonly used to make the variance constant over the data range, especially for 
biological observations (Sokal and Rohlf 1969). In all cases, it is necessary to confirm these requirements before the 
standard t-tests are used.  

 
Nonparametrics: Statistical Methods Based on Ranks by Lehman and D’Abrera (1975) is a comprehensive general 
reference on nonparametric statistical analyses. Gilbert (1987) presents an excellent review of nonparametric 
alternatives to the Student’s t-tests, especially for environmental investigations from which the following discussion 
is summarized. Even though the nonparametric tests remove many of the restrictions associated with the t-tests, the 
t-tests should be used if justifiable. Unfortunately, seldom are the Student’s t-test requirements easily met with 
environmental data and the slight loss of power associated with using the nonparametric tests is much more 
acceptable than misusing the Student’s t-tests. Besides having few data distribution restrictions, many of the 
nonparametric tests can also accommodate a few missing data, or observations below the detection limits. The 
following paragraphs briefly describe the features of the nonparametric tests used to compare data sets. 
 
Nonparametric Tests for Paired Data Observations. The sign test is the basic nonparametric test for paired data. It 
is simple to compute and has no requirements pertaining to data distributions. A few “not detected” observations 
can also be accommodated. Two sets of data are compared and the differences are used to assign a positive sign if 
the value in one data set is greater than the corresponding value in the other data set, or a negative sign is assigned if 
the one value is less than the corresponding value in the other data set. The number of positive signs are added and a 
statistical table (such as in Lehman and D’Abrera 1975, Table G shown below as Table 1) is used to determine if 
the number of positive signs found is unusual for the number of data pairs examined. This table shows that in order 
to have at least a 95% confidence that two sets of paired data are significantly different, only one out of eight pairs 
can have a larger data value in one set compared to the 7 larger ones in the other data set. As the number of pairs of 
observations increase, the allowable number of inconsistent values increases. With 40 pairs of observations, as 
many as 14 inconsistent values are allowed. 
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Table 1. Sign Test Statistical Tables (Lehman and D’Abrera 1975) 
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The Mann-Whitney signed rank test has more power than the sign test, but it requires that the data distributions be 
symmetrical (but with no specific distribution type). Without transformations, this requirement may be difficult to 
justify for water quality data. This test requires that the differences between the data pairs in the two data sets be 
calculated and ranked before checking with a special statistical table (as in Lehman and D’Abrera 1975). In the 
simplest case for monitoring the effectiveness of treatment alternatives, comparisons can be made of inlet and outlet 
conditions to determine the level of pollutant removal and the statistical significance of the concentration 
differences. StatXact-Turbo (CYTEL, Cambridge, MA) is a microcomputer program that computes exact 
nonparametric levels of significance, without resorting to normal approximations. This is especially important for 
the relatively small data sets that will typically be evaluated during most environmental research activities. 
 
Friedman’s test is an extension of the sign test for several related data groups. There are no data distribution 
requirements and the test can accommodate a moderate number of “non-detectable” values, but no missing values 
are allowed.  
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Nonparametric Tests for Independent Data Observations. As for the t-tests, paired test experimental designs are 
superior to independent designs for nonparametric tests because of their ability to cancel out confusing properties. 
However, paired experiments are not always possible, requiring the use of independent tests. The Wilcoxon rank 
sum test is the basic nonparametric test for independent observations. The test statistic is also easy to compute and 
compare to the appropriate statistical table (as in Lehman and D’Abrera 1975). The Wilcoxon rank sum test requires 
that the probability distributions of the two data sets be the same (and therefore have the same variances). There are 
no other restrictions on the data distributions (they do not have to be symmetrical, for example). A moderate number 
of “non-detectable” values can be accommodated by treating them as ties.  
 
The Kruskal-Wallis test is an extension of the Mann-Whitney rank sum test and allows evaluations of several 
independent data sets, instead of just two. Again, the distributions of the data sets must all be the same, but they can 
have any shape. A moderate number of ties and non-detectable values can also be accommodated. 
 
Comparisons of Many Groups 
If there are more than two groups of data to be compared (such as in-stream concentrations at several locations 
along a river, each with multiple observations), one of the analysis of variance, or ANOVA, tests should be used. 
The commonly available one-way, two-way, and three-way ANOVA tests are parametric tests and require that the 
data in each grouping be normally distributed and that the variances be the same in each group. This can be visually 
examined by preparing a probability plot for the data in each group displayed on the same chart. The probability 
plots would need to be parallel and straight. Obviously, log transformations of the data can be used if assumptions 
are met when the data is plotted using log-normal probability axes. On Figure 3a, the influent and effluent 
probability plots for suspended solids at the Monroe St. wet detention pond site in Madison, WI, the probability 
plots are reasonably parallel and straight when plotted as log-normal plots. However, Figure 3c, a similar plot for 
dissolved COD, indicates that the plots are not parallel. Of course, these figures only contain two groupings of data 
(influent and effluent) and one of the previous two-group tests would be more efficient for this data. 
 
If data from multiple stations along a river were collected during different seasons, it would be possible to use the 
two-way ANOVA test to examine the effects of different seasons and different locations, along with the interaction 
of these parameters. Three-way ANOVA tests can be used to evaluate the results of similar field sampling data 
(different locations, different seasons) and another factor, such as natural vs. artificial substrate samplers for benthic 
macroinvertebrates (or seining vs. electro-shocking for fish sampling). These tests would then indicate if the results 
from these different sampling procedures varied significantly by season, or sampling location. These analyses are 
more flexible than the factorial tests, as the factorial tests are most commonly only used for two levels (such as 
winter vs. summer; pools vs. riffles; and artificial substrate vs. natural substrate samplers). Factorial tests are more 
complicated when intermediate, or more than 2 levels, are being considered. However, the ANOVA tests are 
parametric tests and require multiple observations in each group, while the factorial tests are not and can be used 
with single observations per group (although that may not be a good idea considering the expected high variability 
in most environmental sampling). 
 
A non-parametric test, usually included in statistical programs, for comparing many groups is the Kruskal-Wallis 
ANOVA on ranks test. This is only a one-way ANOVA test and would be only suitable for comparing data from 
different sampling sites alone, for example. This would be a good test to supplement grouped box and whisker plots. 
 
Grouped comparison tests indicate only that at least one of the groups is significantly different from at least one 
other, they do not indicate which ones. For that reason, some statistical programs also conduct multiple comparison 
tests. SigmaStat, for example, offers: the Tukey test, Student-Newman-Keuls test, Bonferroni t-test, Fisher’s LDS, 
Dunner’s test, and Duncan’s multiple range test. These tests basically conduct comparisons of each group against 
each other group and identify which are different. 
 
Data Associations 
Identifying patterns and associations in data may be considered a part of exploratory data analyses, but many of the 
tools (especially cluster, principal component, and factor analyses) may require specialized procedures having 
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multiple data handling options that are not available in all statistical software packages, while some (such as 
correlation matrices discussed here) are commonly available.  
 
Identifying data associations, and possible subsequent model building, is another area of interest to many 
investigators examining receiving water conditions. This is a critical component of the “weight-of-evidence” 
approach for identifying possible cause and effect relationships. The following are possible steps for investigating 
data associations: 
 

1) re-examine the hypothesis of cause and effect (an original component of the experimental design 
previously conducted and was the basis for the selected sampling activities).  
2) prepare preliminary examinations of the data, as described previously (most significantly, prepare scatter 
plots and grouped box/whisker plots). 
3) conduct comparison tests to identify significant groupings of data. As an example, if seasonal factors are 
significant, then cause and effect may vary for different times of the year. 
4) conduct correlation matrix analyses to identify simple relationships between parameters. Again, if 
significant groupings were identified, the data should be separated into these groupings for separate 
analyses, in addition to an overall analysis. 
5) further examine complex inter-relationships between parameters by possibly using combinations of 
hierarchical cluster analyses, principal component analyses (PCA), and factor analyses. 
6) compare the apparent relationships observed with the hypothesized relationships and with information 
from the literature. Potential theoretical relationships should be emphasized.  
7) develop initial models containing the significant factors affecting the parameter outcomes. Simple 
apparent relationships between dependent and independent parameters should lead to reasonably simple 
models, while complex relationships will likely require further work and more complex models.  
 

The following sections briefly describe these tools and present some interesting examples of their use. 
 
Correlation Matrices  
Knowledge of the correlations between data elements is very important in many environmental data analyses 
efforts. They are especially important when model building, such as with regression analysis. When constructing a 
model, it is important to include the important factors in the model, but the factors should be independent. 
Correlation analyses can assist by identifying the basic structure of the model.  
 
Table 2 (Pitt 1987) is a standard correlation matrix that shows the relationships between measured rain and 
measured runoff parameters. This is a common Pearson correlation matrix, constructed using the microcomputer 
program SYSTAT (SPSS, Inc. Chicago, IL). It measures the strength of association between the variables. The 
Pearson correlation coefficients vary from -1 to +1. A coefficient of 0 indicates that neither of the two variables can 
be predicted from the other using a linear equation, while values of -1 or +1 indicate that perfect predictions can be 
made of one variable by only using the other variable. This example shows several very high correlations between 
pairs of parameters (>0.9). The paired parameters having high correlations are the same for both sites, indicating the 
same basic processes for rainfall-runoff. High correlations are seen between total runoff depth (RUNTOT) and rain 
depth (RAINTOT) and between runoff duration (RUNDUR) and rain duration (RAINDUR).  
 
 



 
 

25

Table 2. Pearson Correlation Matrix (Pitt 1987) 

 
 
 
It is very important not to confuse correlation with causation. Box, et al. (1978) presents a historical example of a 
plot (Figure 11) of the population of Oldenburg, Germany, against the number of storks observed in each year. In 
this example, few would conclude that the high correlation between the increased number of storks observed and 
the simultaneous increase in population is a cause and effect relationship. The two variables observed are most 
likely related to another factor (such as time in this example, as both sets of populations increased over the years 
from 1930 to 1936). However, many investigators make similar improper assumptions of cause and effect from their 
observations, especially if high correlations are found. It is extremely important that theoretical knowledge of the 
system being modeled be considered. If this knowledge is meager, then specific tests to directly investigate cause 
and effect relationships must be conducted.  
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Figure 11. Possible cause and effect confusion from correlation tests (Box, et al. 1978). 
 
 
Hierarchical Cluster Analyses 
Another method to examine correlations between measured parameters is by using hierarchical cluster analyses. 
Figure 12 (Pitt 1987) is a tree diagram (dendogram) produced by SYSTAT using the same data as presented in the 
correlation matrix. A tree diagram illustrates both simple and complex correlations between parameters. Parameters 
having short branches linking them are more closely correlated than parameters linked by longer branches. In 
addition, the branches can encompass more than just two parameters. The length of the short branches linking only 
two parameters are indirectly comparable to the correlation coefficients (short branches signify correlation 
coefficients close to 1). The main advantage of a cluster analyses is the ability to identify complex correlations that 
cannot be observed using a simple correlation matrix. In this example, the rain total - runoff total and runoff 
duration - rain duration high correlation coefficients found previously are also seen to have simple relationships. In 
contrast, predicting peak runoff rates (PEAKDIS) requires more complex information. Therefore, the model used to 
predict peak runoff would have to be more complex, requiring additional information than required to just predict 
total runoff. Figure 13 is a cluster analysis from the National Stormwater Quality Database (NSQD) (Maestre and 
Pitt 2005) relating different stormwater constituent concentrations, rainfall, and site characteristics. Table 3 is an 
output from SYSTAT showing the distances of the joining branches. More detailed tables are available showing 
other joined constituents. Nitrogen compounds are closely related to rainfall conditions, but other constituents are 
more distantly related to each other. More detailed statistical analyses were conducted by Maestre and Pitt (2005) to 
examine other factors (such as geographical location, season, etc.). 
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Figure 12. Tree diagram from cluster analyses of Toronto rainfall and runoff parameters (Pitt 1987). 
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Figure 13. Cluster analysis for stormwater samples from the National Stormwater Quality 
Database (Maestre and Pitt 2005). 
 
 
Table 3. SYSTAT Summary Table for Cluster Analysis 
Distance metric is Euclidean distance 
Single linkage method (nearest neighbor) 
  
Cluster      and  Cluster        Were joined   No. of members 
containing        containing     at distance   in new cluster 
------------      ------------   ------------  -------------- 
NO2NO3            RAINDPTH              1.960            2 
TKN               NO2NO3                7.337            3 
P                 TKN                   7.504            4 
P                 BOD5                 76.164            5 
P                 COD                 188.538            6 
TDS               P                   473.486            7 
TDS               ZN                  600.646            8 
TSS               TDS                 999.110            9 
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Principal Component Analyses (PCA) and Factor Analyses 
Another important tool to identify relationships and natural groupings of samples or locations is with principal 
component analyses (PCA). Normally, data is autoscaled before PCA in order to remove the artificially large 
influence of constituents having large values compared to constituents having small values. PCA is a sophisticated 
procedure where information is sorted to determine the components (usually constituents) needed to explain the 
variance of the data. Typically, very large numbers of constituents are available for PCA analyses and a relatively 
small number of sample groups are to be identified. Salau, et al. (1997) used PCA (and then cluster analyses) to 
identify characteristics of sediment off Spain. Figure 14 shows the first two component loadings (collectively 
comprising most of the information) for about 60 constituents. The first principal component (PC1) is seen to be a 
near reversed image of the second principal component (PC2) (if a constituent is very important in one PC, it should 
be much less important in the other). Figure 15 shows a scatter plot of PC1 vs. PC2 values for different sample 
locations, showing how there are three main groups of samples, which generally corresponded to two sampling 
areas, plus a third group. The third group was then further analyzed using cluster analysis to examine more complex 
groupings and sampling subareas, as shown in the dendogram of Figure 16.  
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Figure 14. Loadings of principal components (Salau, et al. 1997). 
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Figure 15. Score plots of principal components (Salau, et al. 1997). 
 
 

 
Figure 16. Dendogram of data, without two major groupings (Salau, et al. 1997). 
 
 
Table 4 shows the latent roots (eigenvalues) and component loadings for a principal component analysis of the 
NSQD data. This shows that the first five components explained about 56% of the total variance of all the data. 
Hopefully, most of the variability would be explained with just the first few components. In this example, the first 
component (with 15% of the total variance explained) is mostly comprised of COD and BOD5 values. TSS is spread 
out amongst at least three of the top five principle components. 
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Figure 17 is a scree plot produced by SYSTAT as part of the principle component analyses and shows the 
accumulative effect of additional factors in reducing variability for the NSQD data (Maestre and Pitt 2005). In this 
case, most of the components had similar benefits. It would be desirable to have a plot that was more concave, with 
much greater benefits associated with fewer initial components, and the accumulative effects tapering off for the 
later added factors. 
 
 
 
Table 4. Principal Component SYSTAT Summary for NSQD Data (Maestre and Pitt 2005) 
Latent Roots (Eigenvalues) 
  
                         1           2           3           4           5 
  
                         1.798       1.489       1.200       1.153       1.063 
  
                         6           7           8           9          10 
  
                         0.970       0.938       0.878       0.854       0.802 
  
                        11          12 
  
                         0.496       0.357 
  
Component loadings 
  
                         1           2           3           4           5 
  
   COD                   0.838       0.032      -0.303      -0.130      -0.045 
   BOD5                  0.785       0.073      -0.402      -0.204       0.018 
   IMPERV               -0.130      -0.773      -0.250       0.046       0.133 
   ORDER                 0.050      -0.762       0.103      -0.397      -0.008 
   ACRE                  0.065      -0.029       0.459      -0.690      -0.329 
   NO2NO3                0.172      -0.151       0.227       0.220      -0.519 
   RAINDPTH             -0.168       0.272       0.093      -0.423       0.433 
   TDS                   0.266       0.069       0.360       0.229      -0.382 
   P                     0.350       0.055       0.427       0.190       0.331 
   TSS                   0.280       0.134       0.396      -0.081       0.328 
   ZN                    0.325      -0.338       0.258       0.369       0.276 
   TKN                   0.147      -0.259       0.260       0.040       0.198 
  
Variance Explained by Components 
  
                         1           2           3           4           5 
  
                         1.798       1.489       1.200       1.153       1.063 
  
Percent of Total Variance Explained 
  
                         1           2           3           4           5 
  
                        14.987      12.407       9.997       9.612       8.859 
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Figure 17. Scree plot showing accumulative effect of additional factors in reducing variability 
(Maestre and Pitt 2005). 
 
 
Analysis of Trends in Receiving Water Investigations 
The statistical identification of trends is very demanding. Several publications have excellent descriptions of 
statistical trend analyses for water quality data (as summarized by Pitt 1995). In addition to containing detailed 
descriptions and examples of experimental design methods to determine required sampling effort, Gilbert (1987) 
devotes a large portion of his book to detecting trends in environmental data and includes the code for a 
comprehensive computer program for trend analysis. Reckhow and Stow (1990) present a comprehensive 
assessment of the effectiveness of different water quality monitoring programs in detecting water quality trends 
using EPA STORET data for several rivers and lakes in North Carolina. They found that most of the data (monthly 
phosphorus, nitrogen, and specific conductance values were examined) exhibited seasonal trends and inverse 
relations with flow. In many cases, large numbers of samples would be needed to detect changes of 25 percent or 
less (typical for stormwater retro-fitting activities). 
 
Spooner and Line (1993) present recommendations for monitoring requirements in order to detect trends in 
receiving water quality associated with nonpoint source pollution control programs, based on many years 
experience with the Rural Clean Water Program. These recommendations, even though derived from rural 
experience, should also be very applicable for urban receiving water trend analyses. The following is a general list 
(modified) of their recommended data needs for associating water quality trends with land use/treatment trends: 
 
 • Appropriate and sufficient control practices need to be implemented. A high level of participation/control 
implementation is needed in the watershed to result in a substantial and more easily observed water quality 
improvement. Controls need to be used in areas of greatest benefit (critical source areas, or in drainages below 
major sources) and most of the area must be treated. 
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 • Control practice and land use monitoring is needed to separate and quantify the effects of changes in 
water quality due to the implemented controls by reducing the statistical confusion from other major factors. 
Monitor changes in land use and other activity on a frequent basis to observe temporal changes in the watershed. 
Seasonal variations in runoff quality can be great, along with seasonal variations in pollutant sources (monitor 
during all flow phases, such as during dry weather, wet weather, cold weather, warm weather, for example). Collect 
monitoring data and implement controls on a watershed basis. 
 
 • Monitor the pollutants affecting the beneficial uses of the receiving waters. Conduct the trend analyses 
for pollutants of concern, not just for easy, or convenient, parameters. 
 
 • Monitor for multiple years (at least 2 to 3 years for both pre- and post-control implementation) to account 
for year-to-year variability. Utilize a good experimental design, with preferable use of parallel watersheds (one must 
be a control and the other undergoing treatment). 
 
Preliminary Evaluations before Trend Analyses are Used 
Gilbert (1987) illustrates several sequences of water quality data that can confuse trend analyses. It is obviously 
easiest to detect a trend when the trend is large and the random variation is very small. Cyclic data (such as seasonal 
changes) often are confused as trends when no trends exist (type 1 error) or mask trends that do exist (type 2 error) 
(Reckhow and Stow 1990; Reckhow 1992). Three data characteristics need to be addressed before the data can be 
analyzed for trends because of confusing factors. These include:  
 
 • Measure data correlations, as most statistical tests require uncorrelated data. If data are taken close 
together (in time or in location), they are likely partially correlated. As an example, it is likely that a high value is 
closely surrounded by other relatively high values. Close data can therefore be influenced by each other and do not 
provide unique information. This is especially important when determining confidence limits of predicted values or 
when determining the number of data needed for a trend analyses (Reckhow and Stow 1990). Test statistics 
developed by Sen can use dependent data, but they may require several hundred data observations to be valid 
(Gilbert 1987).  
 
 • Remove any seasonal (or daily) effects, or select a data analysis procedure that is unaffected by data 
cycles. The nonparametric Sen test can be used when no cycles are present, or if cyclic effects are removed, while 
the seasonal Kendall test is not affected by cyclic data (Gilbert 1987). 
 
 • Identify any other likely predictable effects on concentrations and remove their influence. Normally 
occurring large variations in water quality data easily mask commonly occurring subtle trends. Typical relations 
between water quality and flow rate (for flowing water) can be detected by fitting a regression equation to a 
concentration vs. flow plot. The residuals from subtracting the regression from the data are then tested for trends 
using the seasonal Kendall test (Gilbert 1987). 
 
Reckhow (1992) presents a chart listing specific steps that need to be taken to address the above problems. These 
steps are as follows: 
 
 (1) Check the data for deterministic patterns of variability (such as concentration versus flow by using 
graphical and statistical methods). If deterministic patterns exist, subtract the modeled pattern from the original data, 
leaving the residuals for subsequent seasonality analyses. 
 
 (2) Examine the remaining residuals (or data, if no deterministic patterns exist) for seasonal (can be short 
period, such as daily) variations. Again use graphical and statistical methods. If “seasonality” exists, subtract the 
modeled seasonality from the data (residuals from #1 above), leaving the remaining residuals for subsequent trend 
analyses. 
 
 (3) Conduct the trend analysis on the residuals from #2 above, using the standard seasonal Kendall test . If 
a trend exists, subtract the trend, leaving the remaining residuals for subsequent autocorrelation analyses.  
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 (4) Test the remaining residuals from #3 above (or the raw data, if no deterministic or cyclic patterns or 
trends were found) for autocorrelation. If the autocorrelation is significant, re-evaluate the trends using an 
autocorrelated-corrected version of the seasonal Kendall (or regular Kendall) test. If no autocorrelation was found, 
use the standard seasonal Kendall test if seasonality was identified, or the standard Kendall test if no seasonality 
was identified. The final residual variation is then used (after correcting for autocorrelation) in calculating the 
required number of samples needed to detect trends for similar situations. 
 
Statistical Methods Available for Detecting Trends 
Graphical methods. Several sophisticated graphical methods are available for trend analyses that use special 
smoothing routines to reduce short-term variations so the long-term trends can be seen (Gilbert 1987). In all cases, 
simple plots of concentrations versus time of data collection should be made. This will enable obvious data gaps, 
potential short-term variations, and distinct long-term trends to be possibly seen.  

 
Regression methods. A time-honored approach in trend analysis is to perform a least-squares linear regression on 
the quality versus time plot and to conduct a t-test to determine if the true slope is not different from zero (Gilbert 
1987). However, Gilbert (1987) points out that the t-test can be misleading due to cyclic data, correlated data, and 
data that are not normally distributed.  
 
Mann-Kendall test. This test is useful when missing data occur (due to gaps in monitoring, such as if frozen waters 
occur during the winters, equipment failures, or when data are reported as below the limit of detection). Besides 
missing data, this test can also consider multiple data observations per time period. This test also examines trends at 
multiple stations (such as surface waters and deep waters, etc.) and enables comparisons of any trends between the 
stations. This method also is not sensitive to the data distribution type. This test can be considered a nonparametric 
test for zero slope of water quality versus time of sample collection (Gilbert 1987). Short-term (such as seasonal 
changes) cycles and other data relationships (such as flow versus concentration) affect this test and must be 
corrected. If data are highly correlated, then this test can be applied to median values in each discrete time 
groupings. 
 
Sen’s nonparametric estimator of slope. Being a nonparametric test based on ranks, this method is not sensitive to 
extreme values (or gross data errors) when calculating slope (Gilbert 1987). This test can also be used when missing 
data occur in the set of observations. It is closely related to the Mann-Kendall test. 
 
Seasonal Kendall test. This method is preferred to most regression methods if the data are skewed, serially 
correlated, or cyclic (Gilbert 1987). This test can be used for data sets having missing values, tied values, censored 
values (less than detection limits) or single or multiple data observations in each time period. The testing of 
homogeneity of trend direction enables one to determine if the slopes at different locations are the same, when 
seasonality is present. Data correlations (such as flow versus concentration) and dependence also affect this test and 
must be considered in the analysis. 

 
The code for the computer program contained in Gilbert (1987) computes Sen’s estimator of slope for each station-
season combination, along with the seasonal Kendall test, Sen’s aligned test for trends, the seasonal Kendall slope 
estimator for each station, the equivalent slope estimator for each season, and confidence limits on the slope. 
 
Example of Long-Term Trend Analyses for Lake Rönningesjön, Sweden 
An example showing the use of trend analyses for investigating receiving water effects of stormwater is presented 
here, using a Swedish lake example that has undergone stormwater treatment (Pitt 1995). The significant beneficial 
use impairment issue is decreasing transparency associated with eutrophication. The nutrient enrichment was 
thought to have been aggravated by stormwater discharges of phosphorus. Stormwater treatment was shown to 
decrease the phosphorus discharges in the lake, with an associated increase in transparency. The data available 
includes nutrient, chlorophyll a, transparency, and algal evaluations conducted over a 20 to 30 year period, plus 
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treatment plant performance information for 10 years of operation. This trend evaluation was conducted by Pitt 
(1995) using data collected by Swedish researchers, especially Enell and Henriksson-Fejes (1989-1992). 

 
A full-scale plant, using the Karl Dunkers’ system for treatment of separate stormwater (the Flow Balancing 
Method, or FBM) and lake water, has been operating since 1981 in Lake Rönningesjön, Taby (near Stockholm), 
Sweden. The FBM and the associated treatment system significantly improved lake water quality through direct 
treatment of stormwater and by pumping lake water through the treatment system during dry weather. Figure 18 is 
an illustration of an idealized FBM system showing how inflowing stormwater is routed though a series of inter-
connected compartments, before being discharged to the lake. A pump can also be used to withdraw water from the 
first compartment to a treatment facility. Figure 19 is a photograph of a FBM installation located at Lake 
Trehormingen, Sweden. 
 
 

 
Figure 18. Drawing showing underwater features of an FBM facility (Karl Dunkers, Inc.). 
 
 

 
Figure 19. FBM installation located at Lake Trehormingen, Sweden (Karl Dunkers, Inc.). 
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The annual average removals of phosphorus from stormwater and lake water by the ferric chloride precipitation and 
clarification treatment system were 66 percent, while the annual average total lake phosphorus concentration 
reductions averaged about 36 percent. Excess flows are temporarily stored before treatment. Stormwater is pumped 
to the treatment facility during rains, with excess flows stored inside in-lake flow balancing tanks. The treatment 
system consists of a chemical treatment system designed for the removal of phosphorus and uses ferric chloride 
precipitation and crossflow lamella clarifiers. The stormwater is pumped from the flow balancing storage tanks to 
the treatment facility. Lake water is also pumped to the treatment facility during dry periods, after any excess 
stormwater is treated.  
 
The specific question to be addressed by this research was whether controlling phosphorus in stormwater discharges 
to a lake would result in improved lake water quality. Secondly, this evaluation was made to determine if the 
treatment system was designed and operated satisfactorily. The problem formulation employed for this project was a 
long-term trend analysis. Up to 30 years of data were available for some water quality parameters, including about 
10 years of observations before the treatment system was implemented. Data was available for two sampling 
locations in the lake, plus at the stormwater discharge location. In addition, mass balance data was available for the 
treatment operation. 
 
Monitored water quality in Lake Rönningesjön, near Stockholm Sweden, was evaluated to determine the changes in 
transparency and nutrient concentrations associated with retro-fitted stormwater controls. Statistical trend analyses 
were used to evaluate these changes. Several publications have excellent descriptions of statistical trend analyses for 
water quality data. In addition to containing detailed descriptions and examples of experimental design methods to 
determine required sampling effort, Gilbert (1987) devotes a large portion of his book to detecting trends in water 
quality data and includes the code for a comprehensive computer program for trend analysis.  
 
Qualitative watershed and lake characterization 
Lake Rönningesjön is located in Täby, Sweden, near Stockholm. Figure 20 shows the lake location, the watershed, 
and the surrounding urban areas. The watershed area is 650 ha, including Lake Rönningesjön itself (about 60 ha), 
and the urban area that has its stormwater drainage bypassing the lake (about 175 ha). The effective total drainage 
area (including the lake surface) is therefore about 475 ha. Table 5 summarizes the land use of the lake watershed 
area. About one-half of the drainage area (including the lake itself) is treated by the treatment and storage operation. 
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Figure 20. Lake Rönningesjön watershed in Taby, Sweden. 
 
 
Table 5. Lake Rönningesjön Watershed Characteristics 
 
   Area Treated  Additional Area  Total Area 
 
 urban    50 ha   100 ha   150 ha  (32%) 
 forest    75 ha          80 ha   155 ha  (32%) 
 agriculture   65 ha          45 ha   110 ha  (23%) 
 lake surface   60 ha         0 ha     60 ha  (13%) 
 
 total drainage 250 ha   225 ha   475 ha  (100%) 

 
 
The lake volume is about 2,000,000 m3 and has an annual outflow of about 950,000 m3. The estimated mean lake 
resident time is therefore slightly more than two years. The average lake depth is 3.3 m. It is estimated that the rain 
falling directly on the lake surface itself contributes about one-half of the total lake outflow.  
   
The treatment process consists of an in-lake flow balancing storage tank system (the Flow Balancing Method, or 
FBM) to contain excess stormwater flows which are pumped to a treatment facility during dry weather. The 
treatment facility uses ferric chloride and polymer precipitation and crossflow lamella clarifiers. Figure 21 shows 
the cross-section of the FBM in the lake. It is make of plastic curtains forming the cell walls, supported by floating 
pontoons and anchored to the lake bottom with weights.  
 
 



 
 

39

 
Figure 21. Cross-section of FBM in-lake tanks. 
 
 
Figure 22 shows that the FBM provides storage of contaminated water by displacing clean lake water that enters the 
storage facility during dry weather as the FBM water is pumped to the treatment system. All stormwater enters the 
FBM directly (into cell A). The pump continuously pumps water from cell A to the chemical treatment area. If the 
stormwater enters cell A faster than the pump can remove it, the stormwater flows through curtain openings (as a 
slug flow) into cells B, C, D, and finally E, displacing lake water (hence the term flow balancing). As the pump 
continues to operate, stormwater is drawn back into cell A and then to the treatment facility. The FBM is designed 
to capture the entire runoff volume of most storms. The Lake Rönningesjön treatment system is designed to treat 
water at a higher rate than normal to enable lake water to be pumped through the treatment system after all the 
runoff is treated.  
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Figure 22. Flow pattern in FBM. 
  
 
The FBM is mainly intended to be a storage device, but it also operates as a wet detention pond, resulting in 
sedimentation of particulate pollutants within the storage device. The first two cells of the FBM facility at Lake 
Rönningesjön were dredged in 1991, after 10 years of operation, to remove about one meter of polluted sediment.  
  
The treatment flow rate is 60 m3/hr (about 0.4 MGD). The ferric chloride feed rate is about 20 to 35 grams per cubic 
meter of water. About 30 m3 of thickened sludge is produced per day for co-disposal with sludge produced at the 
regional sanitary wastewater treatment facility. The annual operating costs are about $28,000 per year (or about 
$0.03 per 100 gallons of water treated), divided as shown in  
Table 6. 
 
 
Table 6. Stormwater Treatment System Operating Cost Breakdown 
 
  chemicals   26% 
  electricity      8 
  sludge transport        3 
  labor    41 
  sampling and analyses  22  
 
  
From 1981 through 1987, the FBM operated an average of about 5500 hours per year (about 7.6 months per year), 
treating an average of about 0.33 million m3 per year. The treatment period ranged from 28 to 36 weeks (generally 
from April through November). The FBM treatment system treated stormwater about 40% of its operating time and 
lake water about 60% of its operating time. The FBM treatment system directly treated about one-half of the in-
flowing waters to the lake (at a level of about 70% phosphorus removal). 
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Lake Rönningesjön and Treatment System Phosphorus Budgets 
Two tributaries flow directly to the treatment facility. Excess flows (exceeding the treatment plant flow capacity) 
are directed to the FBM in the lake. As the flows in the tributaries fall below the treatment plant capacity, pumps in 
the FBM deliver stored stormwater runoff for treatment. When all of the stormwater is pumped from the FBM, the 
pumps deliver lake water for treatment. Tables 7 and 8 summarize the runoff and lake volumes treated and 
phosphorus removals during the period of treatment. 
 
 
Table 7. Water Balance for Treatment System (m3) 
 

 From  
Trib. A 

From 
Trib. B 

Total 
Stormwater 

From 
Lake 

Total treated 
and discharged 

Stormwater, % 
of total treated 
 

1981 185,100 101,100 286,200 121,600 407,700 70 
1982 112,700 41,000 153,700 238,700 391,900 39 
1983 14,400 6,400 20,800 250,000 271,000 8 
1984 122,000 53,000 175,000 95,000 270,000 65 
1985 96,600 46,500 143,100 149,000 292,400 49 
1986 216,000 86,000 302,000 48,000 350,000 86 
1987 243,000 97,000 340,000 13,000 353,000 96 
1988 26,200 19,300 45,500 186,300 231,800 20 
1989 24,900 19,900 44,800 267,700 312,500 14 
1990 12,160 8,330 20,490 201,270 221,760 9 
1991 11,610 7,780 19,390 121,730 141,120 14 

 
 
 

Table 8. Phosphorus Treatment Mass Balance (kg) 
 

 From  
Trib. A 

From 
Trib. B 

From 
Lake 

Total to 
treatment  

P discharged  
to Lake 

P removal % removal 

1981 20.3 16.8 10.2 47.3 13.6 33.7 71.2 
1982 8.0 8.0 18.0 34.0 12.8 21.2 62.4 
1983 1.5 2.5 20.0 24.0 11.0 13.0 54.2 
1984 10.0 9.5 3.0 22.5 10.0 12.5 55.6 
1985 7.1 5.9 2.1 15.1 4.3 10.8 71.5 
1986 15.2 21.4 3.7 40.3 5.1 35.2 87.3 
1987 18.6 7.5 1.7 27.8 4.3 23.5 84.5 
1988 1.7 2.3 9.2 13.2 6.1 7.1 53.8 
1989 1.7 1.4 14.1 17.2 7.6 9.6 55.8 
1990 1.3 0.3 10.5 12.1 3.7 8.4 69.4 
1991 7.7 9.8 5.6 23.1 8.9 14.2 61.5 

  
 
There have been highly variable levels of phosphorus treatment from stormwater during the period of operation. 
The years from 1988 through 1990 had low phosphorus removals. These years had relatively mild winters with 
substantial stormwater runoff occurring during the winter months when the treatment system was not operating. 
Normally, substantial phosphorus removal occurred with spring snowmelt during the early weeks of the treatment 
plant operation each year. The greatest phosphorus improvements in the lake occurred during the years when the 
largest amounts of stormwater were treated.  
  
The overall phosphorus removal rate for the 11 years from 1981 through 1991 was about 17 kg/year. About 40% of 
the phosphorus removal occurred in the FBM from sedimentation processes, while the remaining occurred in the 
chemical treatment facility. This phosphorus removal would theoretically cause a reduction in phosphorus 
concentrations of about 10 µg/L per year in the lake, or a total phosphorus reduction of about 100 µg/L during the 
data period since the treatment system began operation. About 70% of this phosphorus removal was associated with 
the treatment of stormwater, while about 30% was associated with the treatment of lake water. 
 
Select Monitoring Parameters 
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Lake Rönningesjön water quality has been monitored since 1967 by the Institute for Water and Air Pollution 
Research (IVL); the University of Technology, Stockholm; the Limnological Institute at the University of Uppsala; 
and by Hydroconsult Corp. Surface and subsurface samples were obtained at one or two lake locations about five 
times per year. In addition, the tributaries being treated, incoming lake water, and discharged water, were all 
monitored on all weekdays of treatment plant operation. The creek tributary flow rates were also monitored using 
overflow weirs. Phosphorus, nitrogen, chlorophyll a, and Secchi disk transparency were all monitored at the lake 
stations. 
 
Observed Long-Term Lake Rönningesjön Water Quality Trends 
The FBM started operation in 1981. Based on the hydraulic detention time of the lake, several years would be 
required before a new water quality equilibrium condition would be established. A new water quality equilibrium 
will eventually be reached after existing pollutants are reduced from the lake water and sediments. The new water 
quality conditions would be dependent on the lake flushing rate (or detention time, estimated to be about 2.1 years), 
and the new (reduced) pollutant discharge levels to the lake. Without lake water treatment, the equilibrium water 
quality would be worse and would take longer to obtain. 
  
Figure 23 is a plot of all chlorophyll a data collected at both the south and north sampling stations. Very little trend 
is obvious, but the wide swings in chlorophyll a values appeared to have been reduced after the start of stormwater 
treatment. Figure 24 is a three-dimensional plot of smoothed chlorophyll a data, indicating significant trends by 
season. The values started out relatively low each early spring and dramatically increased as the summer progressed. 
This was expected and was a function of algal growth. Homogeneity, seasonal Kendall and Mann-Kendall statistical 
tests (Gilbert 1987) were conducted using the chlorophyll a data. The homogeneity test was used to determine if any 
trends found at the north and south sampling stations were different. The probabilities that the trends at these two 
stations were the same were calculated as follows: 
 
    χ2  Probability 
 
 season   14.19  0.223 
 station   0.00001  1.000 
 station-season  0.458  1.000 
 Trend   21.64  0.000 
 
 

 
Figure 23. Chlorophyll a observations with time (µg/L). 
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Figure 24. Chlorophyll a trends by season and year (µg/L). 
 
 
This test shows that the trend was very significant (P<0.001) and was the same at both sampling stations (P=1.000). 
The seasonal trend tests only compared data obtained for each season, such as comparing trends for June 
observations alone. The station-season interaction term shows that the chlorophyll a concentration trends at the two 
stations were also very similar for all months (P=1.000). Therefore, the sampling data from both stations were 
combined for further analyses. 
  
The seasonal Kendall test calculated the chlorophyll a concentration trends and determined the probabilities that 
they were not zero, for all months separately. This test and the Mann-Kendall tests found that both the north and 
south sampling locations had slight decreasing (but very significant) overall trends in concentrations with increasing 
years (P≤0.001). However, individual monthly trends were not very significant (P≥0.05). The trends do show an 
important decrease in the peak concentrations of chlorophyll a that occurred during the fall months during the years 
of the FBM operation. The 1980 peak values were about 60 µg/L, while the 1987 peak values were lower, at about 
40 µg/L.  
  
Swedish engineers (Söderlund 1981; and Lundkvist and Söderlund 1988) summarized major changes in the algal 
species present and in the algal biomass in Lake Rönningesjön, corroborating the chlorophyll a and phosphorus 
limiting nutrient observations. From 1977 through 1983, the lake was dominated by a stable population of thread-
shaped blue-green algae species (especially Oscillatoria sp. and Aphanizomenon flos aquae f. gracile). Since 1985, 
the algae population was unstable, with only a small amount of varying blue green (Gomphosphaeria), silicon 
(Melosira, Asterionella and Synedra) and gold (Chrysochromulina) algae species. They also found a substantial 
decrease in the algal biomass in the lake. From 1978 through 1981, the biomass concentration was commonly 
greater than 10 mg/L. The observed maximum was about 20 mg/L, with common annual maximums of 15 mg/L in 
July and August of each year. From 1982 through 1986, the algal biomass was usually less than 10 mg/L. The 
observed maximum was 14 mg/L and the typical annual maximum was about 6 mg/L each late summer. The lake 
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showed an improvement in its eutrophication level since the start of the stormwater treatment, going from 
hypotrophic to eutrophic. 
  
Figure 25 is a plot of all Secchi disk transparency data obtained during the project period. A very large 
improvement in transparency is apparent from this plot, but large variations were observed in most years. A large 
improvement may have occurred in the first five years of stormwater treatment and then the trend may have 
decreased. The smoothed plot in Figure 26 shows significant improvement in Secchi disk transparency since 1980. 
This three-dimensional plot shows that the early years started off with clearer water (as high as 1 m transparency) in 
the spring and then degraded as the seasons progressed, with transparency levels falling to less than 0.5 m in the fall 
months. The later years indicated a significant improvement, especially in the later months of the year.  
 
 

 
Figure 25. Secchi disk transparency observations with time (m). 
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Figure 26. Secchi disk trends by season and year (m). 
 
  
Homogeneity, seasonal Kendall and Mann-Kendall statistical tests (Gilbert 1987) were conducted using the Secchi 
disk transparency data. The homogeneity test was used to determine if any trends found at the north and south 
sampling stations were different. The probabilities that the trends at these two stations were the same were 
calculated as follows: 
 
    χ2  Probability 
 season   17.15  0.103 
 station   0.012  0.913 
 station-season  3.03  0.990 
 Trend   29.44  0.000 
 
These statistics show that the observed trend was very significant (P<0.001) and was the same at both stations. The 
Seasonal Kendall and Mann-Kendall tests found that both the north and south sampling locations had increasing 
transparency values (the average trend was about 0.11 meter per year) with increasing years (P<0.001). The trend in 
later years was found to be less than in the early years. The transparency has remained relatively stable since about 
1987 (ranging from about 1 to 1.5 m), with less seasonal variations. 
  
Figure 27 plots observed phosphorus concentrations with time, while Figure 28 is a smoothed plot showing seasonal 
and annual variations together. The initial steep phosphorus concentration decreases in the early years of the FBM 
operation were followed by a sharp increase during later years. The increase was likely associated with the 
decreased levels of stormwater treatment during the mild winters of 1988 through 1990 when the treatment system 
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was not operating; large amounts of untreated stormwater were discharged into the lake instead of being tied up as 
snow to be treated in the spring as snowmelt runoff.  
 
 

 
Figure 27. Total phosphorus observations with time (µg/L). 
 

 
Figure 28. Total phosphorus trends by season and year (µg/L). 
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Individual year phosphorus concentrations leveled off in the summer (about July). These seasonal phosphorus 
trends were found to be very significant (P≤0.002), but were very small, using the seasonal Kendall test (Gilbert 
1987). Homogeneity tests found no significant differences between lake sample phosphorus concentrations obtained 
at the different sampling locations, or depths, irrespective of season: 
 
    χ2  Probability 
 season   15.38  0.166 
 station   0.0033  0.954 
 station-season  1.64  0.999 
 Trend   12.43  0.000 
 
The overall lake phosphorus concentrations ranged from about 15 to 130 µg/L, with an average of about 65 µg/L. 
The monitored stormwater, before treatment, had phosphorus concentrations ranging from 40 to >1,000 µg/L, with 
an average of about  200 µg/L.  
 
An increase in nitrogen concentrations also occurred from the beginning of each year to the fall months. However, 
the overall annual trend decreased during the first few years of the FBM operation, but it then subsequently 
increased. These total nitrogen concentration variations were similar to the total phosphorus concentration 
variations. However, homogeneity, seasonal Kendall and Mann-Kendall statistical tests (Gilbert 1987) conducted 
using the nitrogen data found that neither the north or south sampling locations had significant concentration trends 
with increasing years (P>0.2). However, lake Kjeldahl nitrogen concentration reductions were found to occur 
during years when the FBM system was treating the largest amounts of stormwater. 

 
Lake Water Quality Model 
A simple water quality model was used with the Lake Rönningesjön data to determine the total annual net 
phosphorus discharges into the lake and to estimate the relative magnitude of various in-lake phosphorus controlling 
processes (associated with algal growth and sediment interactions, for example). These estimated total phosphorus 
discharges were compared to the phosphorus removed by the treatment system. The benefits of the treatment system 
on the lake water quality were then estimated by comparing the expected lake phosphorus concentrations as if the 
treatment system was not operating, to the observed lake phosphorus concentrations. 
  
Thomann and Mueller (1987) presented the following equation to estimate the resulting water pollutant 
concentrations associated with varying input loadings for a well-mixed lake: 
 
  St = (M/V) exp (-T/Td)        eq. 1 
 

    where St = concentration associated with a step input at time t, 
  M = mass discharge per time-step interval (kg), 
  V = volume of lake (2,000,000 m3), 
  T = time since input (years), and 
  Td = hydraulic residence time, or lake volume/lake outflow (2.1 years). 
 
This equation was used to calculate the yearly total mass discharges of phosphorus to Lake Rönningesjön, based on 
observed lake concentrations and lake hydraulic flushing rates. It was assumed that the varying concentrations 
observed were mostly caused by varying mass discharges and much less by variations in the hydraulic flushing rate. 
The flushing rate was likely to vary, but by relatively small amounts. The lake volume was quite constant and the 
outflow rate was expected to vary by less than 20 percent because of the relatively constant rainfall that occurred 
during the years of observation (average rainfall of about 600 mm, with a coefficient of variation of about 0.15). 
  
The total mass of phosphorus discharged into the lake each year from 1972 to 1991 was calculated using the 
following equation (an expansion of equation 1), solving for the Mn-x terms: 
 

Sn = Mn [exp(-Tn/Td)/V] + Mn-1 [exp(-Tn-1/Td)/V] + Mn-2 [exp(-Tn-2/Td)/V] +  
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Mn-3 [exp(-Tn-3/Td)/V] + ...       eq. 2 
 
where Sn is the annual average phosphorus concentration during the current year,  Mn is the net phosphorus mass 
discharged into the lake during the current year,  Mn-1 is the phosphorus mass discharged during the previous year, 
Mn-2 is the phosphorus mass that was discharged two years previous, etc.  
  
The effects of discharges into the lake many years previous to a concentration observation have little effect on that 
year's observations. Similarly, more recent discharges have greater effects on the lake’s concentrations. The 
magnitude of effect that each year's step discharge has on a more recent concentration observation is dependent on 
the exp(-Tn/Td) factors shown in equation 2. A current year's discharge affects that year’s concentration 
observations by about 40 percent of the steady-state theoretical value (M/V), and a discharge from five years 
previous would only affect the current year's concentration observations by less than ten percent of the theoretical 
value for Lake Rönningesjön. Similarly, a new steady-state discharge would require about 4 years before 90 percent 
of its equilibrium concentration would be obtained. It would therefore require several years before the effects of a 
decrease in pollutant discharges would have a major effect on the lake pollutant concentrations.  
  
The annual control of phosphorus ranged from about 10 to 50 percent, with an average lake-wide level of control of 
about 36 percent, during the years of treatment plant operation. It is estimated that there would have been about a 
1.6 times increase in phosphorus discharges into Lake Rönningesjön if the treatment system was not operating. 
There was a substantial variation in the year to year phosphorus discharges, but several trends were evident. If there 
was no treatment, the phosphorus discharges would have increased over the 20 year period from about 50 to 75 kg 
per year associated with increasing amounts of contaminated stormwater associated with increasing urbanization in 
the watershed. With treatment, the discharges were held relatively constant at about 50 kg per year (as evidenced by  
the lack of any observed phosphorus concentration trend in the lake). During 1984 through 1987, the phosphorus 
discharges were quite low compared to other years, but increased substantially in 1988 and 1989 because of the lack 
of stormwater treatment during the unusually mild winters. 
  
Figure 29 is a plot of the annual average lake phosphorus concentrations with time. If there had been no treatment, 
the phosphorus concentrations in the lake would have shown a relatively steady increase from about 50 to about 100 
µg/L over the 20 year period. With treatment, the lake phosphorus concentrations were held within a relatively 
narrower range (from about 50 to 75 µg/L). The lake phosphorus concentration improvements averaged about 50 
µg/L over this period of time, compared to an expected theoretical improvement of about 100 µg/L. Therefore, only 
about one-half of the theoretical improvement occurred, probably because of sediment-water interchange of 
phosphorus, or other unmeasured phosphorus sources. 
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Figure 29. Effects of treatment on Lake Rönningesjön total phosphorus concentrations (µg/L). 
 
 
Project Conclusions 
The in-lake flow balancing method (FBM) for storage of excess stormwater during periods of high flows allowed 
for lower treatment flow rates, while still enabling a large fraction of the stormwater to be treated for phosphorus 
removal. The treatment system also enabled lake water to be treated during periods of low (or no) stormwater flow. 
The treatment of the stormwater before lake discharge accounted for about 70 percent of the total observed 
phosphorus discharge reductions, while the lake water treatment was responsible for the remaining 30 percent of the 
discharge reductions. The lake water was treated during 60 percent of the operating time, but resulted in less 
phosphorus removal, compared to stormwater treatment. The increased efficiency of phosphorus removal from 
stormwater compared to lake water was likely due to the more abundant particulate forms of phosphorus that were 
removed in the FBM by sedimentation and by the stormwater’s higher dissolved phosphorus concentrations that 
were more efficiently removed during the chemical treatment process. 
  
Lake transparency improved with treatment. Secchi disk transparencies were about 0.5 m before treatment began 
and improved to about 1 to 1.5 m after treatment. The total phosphorus concentrations ranged from about 65 to 90 
µg/L during periods of low levels of stormwater treatment, to about 40 to 60 µg/L during periods of high levels of 
stormwater treatment.   
  
The annual average removals of phosphorus by the ferric chloride precipitation and clarification treatment system 
were 66 percent, with a maximum of 87 percent. The observed phosphorus concentration improvements in the lake 
were strongly dependent on the fraction of the annual stormwater flow that was treated. The annual average total 
lake phosphorus discharge and concentration reductions averaged about 36 percent, or about one half of the 
maximum expected benefit.  
 
The water sampling for this project was irregular. Only a relatively few samples were obtained in any one year, but 
up to 30 years of data were obtained. In addition, no winter data was available due to icing of the lake. In general, 
statistically-based trend analyses are more powerful with evenly spaced data over the entire period of time. 
However, this is typically unrealistic in environmental investigations because of an inability to control other 
important factors. If all samples were taken on the 15th of each month, for example, the samples would be taken 
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under highly variable weather conditions. Weather is a significant factor in urban runoff studies, obviously, and this 
statistical methodology requirement would have severely confounded the results. The trend analyses presented by 
Gilbert (1987) enable a more reasonable sample collection effort, with some missing data. However, the procedure 
does require relatively complete data collected over an extended period of time. It would have been very difficult to 
conduct this analysis with only a few years of the data, for example. The seasonal patterns were very obvious when 
multiple years of before and after treatment were monitored. In addition, the many years of data enabled unusual 
weather conditions (such as the years with unusually mild winters) to stand out from the more typical weather 
conditions. 
 
The analytical effort only focused on a few parameters. This is acceptable for a well designed and executed project, 
but prohibits further insights that a more expansive effort may obtain. Since this project was specifically 
investigating transparency associated eutrophication, the parameters evaluated enabled the basic project objectives 
to be effectively evaluated. However, the cost of labor for the sampling effort is a major component of an 
investigation like this one, and some additional supportive analyses may not have added much to the overall project 
cost while adding potentially valuable additional information. 
 
In general, trend analyses require a large amount of data, typically obtained over a long period of time. These 
requirements cause potential problems. Experimental designs for a several year (or several decade) monitoring 
effort are difficult to carry out. Many uncontrolled changes may occur during a long period, such as changes in 
laboratory analyses methods. Laboratory method changes can affect the specific chemical species being measured, 
or at least have differing detection limit capabilities. This study examined basic measurements that have not 
undergone major historical changes, and very few "non-detectable" values were reported. In contrast, examining 
historical heavy metal data is very difficult because of changes in instrumentation and associated detection limits. 
The need for a typically long duration study also requires a long period before statistically relevant conclusions can 
be obtained. Budget reductions in the future always threaten long-term efforts. In addition, personnel changes lead 
to inconsistent sampling and may also possibly lead to other errors. Basically, adequate trend analyses require a 
large amount of resources (including time) to be successful. The use of historical data not collected for a specific 
trend analysis objective is obvious and should be investigated to supplement an anticipated project. However, great 
care must be expended to ensure the quality of the data. In most cases, incorrect sampling locations and dates, let 
alone obvious errors in reported concentrations, will be found in historical data files. These problems, in 
conjunction with problems associated with changing laboratory methods during the monitoring period, require 
special effort. 
 
 
Example Stormwater Data Analysis 
Sampling Effort and Basic Data Presentations 
The following is an example of a large-scale stormwater data analysis effort recently conducted for the 
telecommunication industry. Table 9 lists the numbers of samples that were sent to our lab for analyses from the 
nine participating companies, by season.  
 
Based on prior determinations. each strata needs about 10 separate samples in order to estimate the quality 
characteristics with an error level of about 25 percent. The goal of each participant is to obtain samples from four 
groups of locations (having 10 each) for each season: 
 

1)  old industrial/commercial (or central city) area 
2)  new industrial/commercial (or central city) area 
3)  old residential (or suburban) area 
4)  new residential (or suburban) area 

 
The same areas were sampled during each season to minimize additional variation. The main seasons for sampling 
were winter and summer. Therefore, each participant was to collect a total of 40 samples per season, for at least 
these two seasons. The collection of additional samples for other seasons or land uses enabled further comparisons 
to be made. 
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Table 10 is an example partial listing of the cities sampled during this program, while Figure 30 shows their 
geographical distribution and associated EPA rainfall region. Thirty-two states, plus the District of Columbia were 
represented in this sampling effort. All EPA Rain Regions were also represented, although Regions 5, 8, and 9 had 
fewer samples. The sampled cities represent annual rainfalls ranging from about 7 inches (Phoenix) to about 65 
inches (Pensacola).  
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Table 9. Samples Analyzed from Various Telecommunication Companies and Seasons 
 Winter 

1995/96 
Spring 
1996 

Summer 
1996 

Fall 1996 Winter 
1996/97 

Spring/ 
Summer 1997 

Fall/ 
Winter 1997 

Winter 
1997/98 

Summer 
1998 
 

Winter 
1998/99 

Total 

NYNEX 15 15 20 20 0 6 0 0 0 0 76 

Bell Atlantic 14 0 26 22 24 20 0 0 0 0 106 

BellSouth 3 36 36 32 31 0 0 0 0 0 138 

SNET 0 0 0 20 20 0 0 0 0 0 40 

Pacific Bell 0 0 0 0 0 21 23 0 0 0 44 

GTE 0 0 0 0 0 24 23 16 0 0 63 

U.S. West 0 0 0 0 0 0 0 35 35 0 70 

Ameritech 0 0 0 0 0 0 0 40 40 0 80 

AT&T 0 0 0 0 0 0 0 0 40 40 80 

TOTAL 32 51 82 94 75 71 46 91 115 40 697 
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Table 10. Sampling cities and their locations. 
SAMPLING LOCATIONS BY COMPANY AND STATE 
 
Note: (EPA Rainfall Zone Number, Average Annual Precipitation [in.]) after city name 
Ameritech Illinois 

Frankfort (4, 35) 
Joliet (1, 33) 
Lemont (1, 33) 
New Lenox (1, 33) 

Indiana 
Gary (1, 33) 
Indianapolis (2, 39) 
Merrillville (1, 33) 
St. John (1, 33) 

Michigan 
Ann Arbor (1, 31) 
Dearborn (1, 31) 
Detroit (1, 31) 
Rockwood (1, 31) 
Southgate (1, 31) 

Ohio 
Columbus (1/2, 37) 
Dublin (2, 37) 
Hilliard (2, 37) 
Graves City (2, 37) 

Wisconsin 
Madison (1, 37) 

 

AT & T Missouri 
St. Louis (4, 34) 

Montana 
Billings (8, 15) 

Nebraska 
Omaha/Lincoln (9, 30) 

Idaho 
Boise (8,11) 

  

Bell Atlantic District of Columbia 
(2, 39) 

Maryland 
Baltimore (2, 42) 
Edgemere (2, 42) 
Prince Georges Cty. (2, 
42) 

New Jersey 
Fairfield (1, 42) 
Garfield (1, 42) 
Lincoln Park (1, 42) 

Pennsylvania 
Monroeville (1, 41) 
Moon Township (1, 36) 
New Kensington (1, 36) 
Philadelphia (1, 41) 
Pittsburgh (1, 36) 
Trooper (1, 41) 
West Mifflin (1, 36) 

Virginia 
Arlington (2, 44) 
Richmond (2, 44) 

West Virginia 
Beckley (2, 40) 
Charleston (2, 42) 

BellSouth Alabama 
Birmingham (3, 55) 
Center Point (3, 55) 
Homewood (3, 55) 
Hoover (3, 55) 

Florida 
Ft. Lauderdale (3, 58) 
Jacksonville (3, 53) 
Miami (3, 58) 
Orlando (3, 53) 
Pensacola (3, 65) 

Georgia 
Conyers (3, 49) 
Decatur (3, 49) 
Fairington (3, 49) 

Louisiana 
Baton Rouge (4, 60) 
Lafayette (4, 60) 
Lake Arthur (4, 60) 
Oakdale (4, 60) 
 

North Carolina 
Asheville (2, 48) 

 

GTE Illinois 
Bloomington (1, 35) 
Rantoul (1, 35) 
Dekalb (1, 33) 

Indiana 
Lafayette (2, 39) 
Terre Haute (2, 39) 
Valparaiso (1, 33) 

Oregon 
Beaverton (7, 37) 
Coos Bay (7, 46) 
Hillsboro (7, 37) 
Reedsport (7, 46) 
Tigard (7, 37) 

Washington 
Anacortes (7, 39) 
Bothell (7, 39) 
Burlington (7, 39) 
Camas (7, 37) 
Everett (7, 39) 
Marysville (7, 39) 
Monroe (7, 39) 
Mount Vernon (7, 39) 
Mukilteo (7, 39) 

  

 



 
 

54

 

 
Figure 30. Map of US with sampling cities and EPA Rain Zones 
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BellSouth, U.S. West, Ameritech, and AT&T were close to having collected 40 samples for each of the two main 
seasons. BellSouth, NYNEX and Bell Atlantic also collected samples from all four seasons. SNET and Pacific Bell 
collected somewhat fewer samples. The total number of samples collected was close to the number as originally 
planned (at 80 per participant), but with half the number of locations sampled per some seasons, but twice as many 
seasons were represented for other areas. Very close to the total number of samples identified as our overall goal 
(720) was collected (697). About 390 sediment samples were also collected for concurrent analysis.  
 
Summary of Data  
Data Summaries 
Most of the constituents have several hundred to almost 700 analyses available. Table 11 summarizes some of these 
data. 
  
Table 11. Statistical Summary of Data 
 
 Temp at 

Sampling 
(oF) 

Water 
depth  
(ft) 

Sediment 
depth  
(ft) 

Total 
Solids 
(mg/L) 

Dissolved 
Solids 
(mg/L) 

Suspended 
Solids 
(mg/L) 

Volatile 
Total 
Solids 
(mg/L) 

        
Number of Analyses 614 648 559 685 683 683 685 
Number of Detectable 614 614 380 685 683 549 685 
Percent Detectable 100 94.8 68 100 100 80.4 100 
COV 3.24 1.31 0.68 0.58 0.54 0.32 0.57 
        
1st Percentile 25.0 0 0 89 69 nd 14 
5th Percentile 32.0 0 0 146 118 nd 22 
10th Percentile 35.0 0.3 0 199 160 nd 31 
15th Percentile 38.0 0.7 0 239 208 nd 36 
20th Percentile 40.0 1.0 0 280 238 1 42 
25th Percentile 45.0 1.3 0 314 278 4 48 
30th Percentile 45.0 1.7 0 351 308 6 53 
35th Percentile 50.0 2.0 0 385 342 9 59 
40th Percentile 50.2 2.4 0 437 379 12 64 
45th Percentile 55.0 2.8 0 487 424 15 71 
50th Percentile 60.0 3.0 0.1 546 471 19 80 
55th Percentile 64.2 3.5 0.1 625 544 25 92 
60th Percentile 66.0 4.0 0.1 694 612 33 104 
65th Percentile 70.0 4.0 0.2 770 712 41 119 
70th Percentile 70.0 4.5 0.2 894 824 56 139 
75th Percentile 75.0 5.0 0.3 1062 968 73 160 
80th Percentile 76.0 5.6 0.3 1306 1144 98 188 
85th Percentile 80.0 6.0 0.3 1665 1541 144 246 
90th Percentile 85.0 7.0 0.3 2228 1935 208 337 
95th Percentile 88.0 8.0 0.5 3597 3435 414 484 
100th Percentile 105.0 13.0 1.5 32950 32756 3505 3264 
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Table 11. Statistical Summary of Data (continued) 
 
 Volatile 

Dissolved 
Solids 
(mg/L) 

Volatile 
Suspended 
Solids 
(mg/L) 

Suspended 
Solids  
(mg/L) 

% of 
Volatile 
Solids - 
Sediment 

Turbidity 
Unfiltered 
(NTU) 

Turbidity 
Filtered 
(NTU) 

pH Toxicity 
Unfiltered 
(I25% 
reduction) 

Toxicity 
Filtered 
(I25% 
reduction) 

COD 
Unfiltered 
(mg/L) 

           
Number of Analyses 683 683 593 387 685 685 684 681 682 681 
Number of Detectable 682 463 580 384 685 684 684 450 441 594 
Percent Detectable 99.9 67.8 97.8 99.2 100 99.9 100 66.1 64.7 87.2 
COV 0.66 0.23 0.35 1.16 0.25 0.53 13.32 0.84 0.82 0.69 
           
1st Percentile 6 nd nd 0.5 0.3 0.1 6.2 nd nd nd 
5th Percentile 16 nd 2 1.1 0.6 0.2 6.6 nd nd nd 
10th Percentile 24 nd 3 1.7 1.0 0.2 6.8 nd nd nd 
15th Percentile 29 nd 4 2.3 1.4 0.3 7.0 nd nd 1 
20th Percentile 33 nd 5 3.0 1.8 0.4 7.1 nd nd 4 
25th Percentile 37 nd 6 3.6 2.2 0.4 7.2 nd nd 6 
30th Percentile 43 nd 7 4.0 2.7 0.5 7.3 nd nd 8 
35th Percentile 49 2 8 4.6 3.3 0.5 7.4 1 nd 10 
40th Percentile 53 5 10 5.4 4.3 0.6 7.5 5 4 12 
45th Percentile 60 7 11 5.8 5.3 0.7 7.5 9 8 13 
50th Percentile 67 9 13 6.1 6.5 0.8 7.6 12 12 16 
55th Percentile 75 12 14 6.7 8.2 0.9 7.7 17 16 19 
60th Percentile 85 17 17 7.3 9.6 1.0 7.7 22 21 21 
65th Percentile 99 20 21 8.7 11.9 1.1 7.8 29 27 24 
70th Percentile 113 25 25 9.7 15.1 1.2 7.9 39 34 26 
75th Percentile 132 32 34 11.0 17.8 1.5 7.9 51 45 32 
80th Percentile 158 42 46 12.4 22.8 1.8 8.0 63 57 38 
85th Percentile 192 51 66 14.3 32.8 2.1 8.1 76 74 47 
90th Percentile 256 74 119 17.3 68.8 2.7 8.3 86 85 62 
95th Percentile 371 126 308 21.4 127.4 3.9 8.4 97 95 118 
100th Percentile 2093 3025 2123 67.8 2097.0 42.0 9.4 100 100 372 
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Exploratory Data Analysis of Rainfall and Runoff Characteristics for Urban Areas 
Actual stormwater characteristics from the EPA’s Nationwide Urban Runoff Program (EPA 1983), the EPA’s 
Urban- Rainfall-Runoff-Quality Data Base (Heaney, et al. 1982), and from the Humber River portion of the Toronto 
Area Watershed Management Study (Pitt and McLean 1986) were examined by Pitt, et al. (2001). The Toronto area 
data were from two extensively monitored watersheds, a residential/commercial area and an industrial area. Most of 
the EPA’s “Data Base” information used was from 2 locations in Broward County, FL; 1 site in Dade County, FL; 2 
sites in Salt Lake City, UT; and 2 sites in Seattle, WA. Most of the data were obtained during the 1970s. These sites 
had the best representation of data of interest for these analyses and the sites were well described. Parameters 
examined included simultaneous rainfall and runoff depths, plus peak rain and flow rates. The following plots were 
prepared using this data: 
 

• runoff depth versus rainfall,  
• volumetric runoff coefficient (Rv) versus rainfall,  
• NRCS curve number (CN) versus rainfall, and 
• ratio of reported peak flow/peak rainfall versus rainfall.  
 

In a similar manner, information from the EPA’s NURP program (EPA 1983) was also investigated. A wider 
variety of information was collected during NURP, enabling additional relationships examining stormwater quality. 
Most of the data used here are from 5 sites in Champaign, IL; 2 sites in Austin, TX; 5 sites in Irondequoit Bay, NY; 
1 site in Rapid City, SD; plus additional observations from Tampa, FL, Winston Salem, NC, and Eugene and 
Springfield, OR. Most of this data were obtained during the early 1980s and was subjected to rigorous quality 
control. Besides the four plots listed above, the following plots were also constructed examining potential water 
quality concentration relationships:  
 

• total suspended solids concentration versus rainfall depth,  
• COD concentration versus rainfall depth,  
• phosphorous concentration versus rainfall depth,  
• lead concentration versus rainfall depth,  
• peak flow/peak rain versus rainfall depth, and  
• peak flow rate versus peak rain intensity.  
 

These plots were constructed to examine stormwater design methods using actual monitored data. These data can be 
used to examine many typical assumptions concerning stormwater drainage design and stormwater quality. Figures 
31 through 39 show example plots for the John South Basin, a single family residential area, monitored during the 
EPA’s NURP project in Champaign-Urbana, IL. The basic rainfall versus runoff plots (Figure 31) were made to 
indicate the smoothness of this basic relationship. A large scatter instead of a smooth curve may indicate 
measurement errors or uneven rainfalls over the catchment, or highly variable infiltration characteristics (due to 
changing soil moisture before the different rains). As shown on these plots, the runoff depth increases with 
increasing rain. However, several plots do show substantial scatter, mostly for sites having relatively small runoff 
yields. In addition, in some cases, more runoff was observed than could be accounted for by the rain. Errors in these 
measurements may be significant and would vary for the different sites. The following list shows possible 
measurement errors that may have affected this data: 
 

• variable rainfall over a large test catchment that was not well represented by enough rain gages  
  (Although several of the test catchments had multiple rain gages, most did not, and few were  
  probably frequently re-calibrated in the field.), 
• poorly calibrated monitoring equipment (Many flow monitoring equipment relied on using the  
  Manning’s equation in pipes, with assumed roughness coefficients, without independent calibration,  
  while other monitoring locations used calibrated insert weirs.) 
• transcription errors (Many of these older monitoring activities required manual transfer from field  
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  equipment recorders to computers for analysis. In many cases, obvious “factor of ten” errors were  
  made, for example.), 
• newly developed equipment that has not been adequately tested, and 
• difficult locations in the sewerage or streams that were monitored.  

 
It is expected that the measurement errors were probably no less than about 25% during these monitoring activities. 
The effects of actual influencing factors can only be determined after the effects of these errors are considered.  

 

 
Figure 31. Runoff vs. rainfall. 
 
 
 

 
Figure 32. Rv vs. rainfall. 
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Figure 33. Curve number vs. rain depth. 
 
 

 
 
Figure 34. Peak flow vs. peak rain. 
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Figure 35. Peak/avg. runoff vs. rain depth. 
 
 
 

 
 

Figure 36. SS vs. rain depth. 
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Figure 37. COD vs. rain depth. 
 
 

 
Figure 38. Phosphorus vs. rain depth. 
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Figure 39. Lead vs. rain depth. 
 
 
The plots of rainfall versus the volumetric runoff coefficient plot (Figure 32) shows the ratio of the runoff volume, 
expressed as depth for the watershed, to rain depth, or the Rv, for different rain depths. This is a related plot to the 
one described above. If the Rv ratio was constant for all events, the rainfall versus runoff depth plot described 
above, would indicate a straight diagonal line, with no scatter. It is typically assumed that the above described 
relationship would indicate increasing Rv values as the rain depth increased. Figure 31 shows a slight upwards 
curve with increasing rain depths. This is due to the rainfall losses making up smaller and smaller portions of the 
total rainfall as the rainfall increases, with a larger fraction of the rainfall occurring as runoff. The plot of Rv versus 
rainfall (Figure 32) would therefore show an increasing trend with increasing rain depth. In most cases, the plots of 
actual data indicate a large (random?) scatter, making the identification of a trend problematic. The use of a constant 
Rv for all rains may also be a problem because of the large scatter. In many cases, the long-term average Rv for a 
residential area may be close to the typically used value. In Figure 32, the values appear to center about 0.2 
(somewhat smaller than the typically used value of about 0.3 for medium density residential areas), but the observed 
Rv values may range from lows of less than 0.04 to highs of greater than 0.5, especially for the smallest rains. The 
small rains probably have the greatest measurement errors, as the rainfall is much more variable for small rains than 
for larger rains, plus very low flows are difficult to accurately measure. Obviously, understanding what may be 
causing this scatter is of great interest, but is difficult because of measurement errors masking trends that may be 
present. In many cases, using a probability distribution to describe this variation may be the best approach.  
 
The NRCS assumes that the CN is constant for all rain depths for a specific site. However, they specify several 
limitations, including: 
 

• the CN method is less accurate when the runoff is less than 0.5 inch. It is suggested that an  
   independent procedure be used for confirmation, 
• the CN needs to be modified according to antecedent conditions, especially soil moisture before an  
   event, and 
• the effects of impervious modifications (especially if they are not directly connected to the drainage  
   path) needs to be reflected in the CN. 

 
Few of these warnings are considered by most storm drainage designers, or by users of NRCS CN procedures for 
stormwater quality analyses. Figure 33 shows the typical pattern obtained when plotting CN against rain depth. The 
CN for small rain depths is always very large (approaching 100), then it decreases as the rain depth increases. At 
some point, the observed CN values equal the NRCS published recommended CN. During rains smaller than this 
matching point, the actual CN is greater than the NRCS CN. Predicted runoff depths would therefore be much less 
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than the observed depths during these rains. Very large differences in runoff depths are associated with small 
differences in CN values, making this variation very important.  
 
Figure 34 shows the observed peak runoff flow rate versus the peak rain intensity. If the averaging period for the 
peak flows and peak rain intensities were close to the catchment time of concentration (tc), the slope of this 
relationship would be comparable to the Rational coefficient (C). The averaging times for the peak values probably 
ranged from 5 minutes to 1 hour for the different projects. Unfortunately, this averaging time period was rarely 
specified in the data documentation. Most urban area tc values probably range from about 5 to 15 minutes. As 
indicated in this figure, the relationship between these two parameters shows a general upward trend, but it would 
be difficult to fit a statistically valid straight line through the data. As noted above for the other two drainage design 
procedures, actual real-world variations (coupled to measurement errors) add a lot of variation to the predicted 
runoff flow and volume estimates. Most drainage designers do not consider the actual variations that may occur. 
 
Figure 35 shows an example plot of the ratio of the peak runoff flow rate to the average runoff flow rate versus rain 
depth. These values can be used to help describe the shape of simple urban area hydrographs. If the hydrograph can 
be represented by a simple triangular hydrograph, then the peak flow to average flow ratio must be close to 2. As 
shown on these figures, this ratio is typically substantially larger than 2 (it can never be less than 1 obviously), 
indicating the need to use a somewhat more sophisticated hydrograph shape (such as a double triangular hydrograph 
that can consider greater flows). These plots indicate if this ratio can be predicted as a function of rain depth. In 
most cases, values close to 2 are seen for the smallest rains, but they ratio increases to 5, or more, fairly quickly, but 
with much variability.  
 
Example plots for total suspended solids, COD, phosphorous, and lead are shown on Figures 36 through 39. It is 
commonly assumed that runoff pollutant concentrations are high for small rains (and at the beginning of all rains) 
and then taper off (the “first-flush” effect). As indicated on these plots, concentration has a generally random 
pattern. In many cases, the highest concentrations observed will occur for small events, but there is a large variation 
in observed concentrations at all rain depths. The upper limits of observed concentrations may show a declining 
curve with increasing rain depths, but the concentrations may best be described with random probability 
distributions. Analyses of concentrations versus antecedent dry periods can reduce some of this variability, as can 
analyses of runoff concentrations from isolated source areas. 
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Evaluation of Data Groupings and Associations 
The telecommunication data was evaluated to identify correlations between various site characteristics and sediment 
and water quality. In addition, relationships between different parameters were also examined to find measurements 
that correlated with one another. 
 
The most obvious correlation of the data with site conditions and with other parameters was for the very high winter 
dissolved solids and conductivity values in EPA Rain Region 1 compared to other seasons and areas. The snowmelt 
runoff during the winter seasons in the northeast dramatically affected the winter season quality of the sampled 
water collected for NYNEX and Bell Atlantic, especially for TDS and conductivity. In addition, increased dissolved 
solids and conductivity values were also found in some east coast locations that were tidally influenced by close-by 
brackish waters. Because of the very high chloride ion concentrations, several of the analytical methods were 
subjected to large interferences (especially the major ions by ion chromatography). These samples were re-analyzed 
using other methods less subject to interference to better determine the maximum concentrations, especially for 
nitrates.  
 
The large amount of data collected during this project and the adherence to the original experimental design enabled 
a comprehensive statistical evaluation of the data. Several steps in data analysis were performed, including: 
 
 • exploratory data analyses (mainly probability plots and grouped box plots), 
 • simple correlation analyses (mainly Pearson correlation matrices and associated scatter plots), 

• complex correlation analyses (mainly cluster and principal component analyses, plus Kurskal-Wallis  
   comparison tests), and  
• model building (based on complete 24 factorial analyses of the most important factors) 

 
The following discussion presents the results of these analyses. 
 
Exploratory Data Analyses 
A series of plots were prepared that represented data relationships and groupings, arranged by parameter sets 
(solids, common parameters, bacteria, other sewage indicators, nutrients, heavy metals, and organics). Included for 
most parameters are the following plots: 
 
 • grouped box and whisker plots for all data, by season 
 • grouped box and whisker plots showing all residential and commercial/industrial data, separated by  

   season and age, 
 • grouped box and whisker plots for all data by EPA rainfall zone and season  
 • grouped box and whisker plots separating data by company, season, age, and land use. 
 • overall probability plots 
 • probability plots separated by land use 
 • probability plots separated by age of development 
 • probability plots separated by season 
  
The data indicated that the sampling effort needed as previously described was appropriate. Some of the parameters 
had high COV values, while others were more moderate, as expected. In almost all cases, the overall data for each 
constituent was best described using log-normal probability plots (the notable and obvious exception is for pH). 
This requires the use on nonparametric statistical methods, or transformations of the data using log10. The following 
discussion presents some of the obvious trends and relationships noted from these plots: 
 
Solids Measurements in Water and Sediment Samples  
The highest total solids observations were from older commercial and industrial areas. Winter water samples had the 
highest concentrations, followed by spring and summer observations, while the fall samples had the lowest 
concentrations. Almost all of the total solids were in the dissolved form (with a median TDS concentration of about 
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450 mg/L), with only small contributions from the suspended solids (median SS concentration of 20 mg/L). About 
15% of the total and dissolved solids were in volatile forms, while about 50% of the suspended solids were in 
volatile forms. 
 
The highest dissolved solids concentrations were observed during the winter sampling periods, with some TDS 
concentrations greater than 10,000 mg/L. The highest values were observed in samples from EPA rainfall zone 1 
(specifically at NYNEX older residential sampling locations during the winter). Older commercial and industrial 
Bell Atlantic sites showed distinct trends in TDS by season, with the highest values observed during the winter, and 
then with steadily decreasing values through the year, with the lowest observed values during the fall season. The 
high TDS values associated with winter snowmelt inflow decreased by about ten-fold by the fall, likely by the less 
saline inflowing stormwater during the late spring, summer, and early fall seasons, or they may have been affected 
by local groundwaters that change in dissolved solids with time. A similar pattern was also observed at the SNET 
older residential, and the Ameritech mid-aged and older residential locations. Therefore, this pattern is very likely 
common to most areas using de-icing salts. Similar patterns were also observed for many of the conductivity 
measurements. Many of the AT&T sites in northern areas that were sampled in the summer of 1998 also had high 
TDS values, but the following winter samples were much lower in TDS, possibly because these winter samples may 
have been collected previous to the snowmelt season. Some of the coastal locations were noted to be directly 
affected by tidal conditions, with continuous high dissolved solids and conductivity conditions. 
 
There were no apparent overall trends for turbidity by season, although the overall range observed was quite large 
(from <1 to about 2,000 NTU, with a median value of about 7 NTU). Filtration through 0.45 µm membrane filters 
reduced the turbidity values significantly (the maximum was reduced to about 45 NTU and the median to about 0.8 
NTU). The largest turbidity values observed were from water samples collected from mid-aged and older residential 
areas located in EPA rainfall zones 1 and 3 (some samples from Bell Atlantic older residential areas approached 
2,000 NTU). Samples from EPA rainfall zone 3 (especially newer residential area BellSouth samples) do indicate 
seasonal differences in turbidity, where the summer and (especially) fall samples averaged several times greater than 
the winter and spring samples. The BellSouth new residential area samples collected during the fall also had some 
of the highest turbidity values observed (several hundred NTU). A less distinct, but similar pattern, may also occur 
for EPA rainfall zone 2 samples.  
 
The sediment had volatile contents ranging from <1 to about 70%, while the median volatile content was about 6%. 
There were no obvious relations of sediment volatile content for different seasons, land uses, or age of development.  
 
Common Constituent Measurements in Water and Sediment Samples  
A possible overall trend indicated lower pH values from spring water samples (median of about 7), higher pH 
values from winter and summer samples (medians of about 7.3), and the highest pH values (median of about 8) 
from fall samples. The fall samples from both residential and commercial/industrial areas were much higher than for 
the other three seasons. Only EPA rain regions 1, 2, and 3 had fall and spring samples, and all three of these areas 
experienced high fall samples. Rain regions 5, 6, and 9 showed lower summer pH values than for the winter 
samples.  
 
There was also a wide range in color of the water samples, with no apparent overall relationships with season, age, 
or land use. In rain region 2, the summer and fall samples had higher colors than the winter and spring samples, 
especially for samples from older commercial/industrial areas. Many of the newer samples (from GTE, SNET, and 
PacBell sampling) also had much more color in the fall samples than in the winter samples. Residential area samples 
also had higher levels of color than samples from industrial and commercial areas.  
 
COD did not vary greatly for different land uses, seasons, or age of development. About 20% of the samples did not 
have detectable COD, but maximum values approached 400 mg/L, and the median value was about 15 mg/L. 
Filtration reduced the overall COD values by about 30%, with the median filterable COD being about 10 mg/L, and 
the maximum filterable COD approaching 300 mg/L. The sediment COD values ranged from about 1,000 to 
300,000 mg/kg, with the median about 85,000 mg/kg. These sediment COD values appear high, but about 75% of 
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the volatile solids observations of the sediment had more than 10% volatile solids. The sediment samples from new 
areas had much lower COD values than sediment samples from older areas.  
 
The hardness values of spring water samples were generally higher (harder), while the fall samples were generally 
lower (softer) than for the other seasons.  
 
There was no overall pattern observed for ammonia measured in the water samples. The highest observations (up to 
45 mg/L) were from samples collected from EPA rain region 1, especially during the winter and fall. Most of the 
ammonia observations were quite low, with very few exceptions. The highest nitrate observations (close to 200 
mg/L) were from new commercial and industrial areas sampled in rain zones 1 and 3. The highest phosphate 
concentrations observed (about 20 mg/L) were from older residential areas, although water from older commercial 
and industrial areas also had relatively high phosphate concentrations (up to about 2 mg/L). EPA rain region 3 had 
the highest phosphate observations for each season.  
 
About 300 water samples were analyzed for E. coli and enterococci from the samples collected during the later part 
of the project. Therefore, few samples were analyzed from the original project participants. Generally, bacteria was 
much reduced during colder winter periods in stormwater. However, when observing patterns for enterococci, the 
overall median values were quite similar for all seasons, while the  median summer E. coli observations were 
substantially higher than for the other seasons. The bacteria values were highly variable, with similar ranges for the 
residential and the commercial areas. When examining the data for the different EPA rain regions, the winter 
samples from zone 1 (a colder area) had much lower bacteria counts less than the corresponding summer samples, 
while in zone 6 (a hot area) samples had reduced summer bacteria observations. Air temperatures during sampling 
ranged from about 15oF to 100oF. This implies that either extreme cold or hot weather conditions may reduce 
bacterial survival, as expected. Similar patterns were also found for enterococci bacteria observations. 
 
Detergent, boron, fluoride, and potassium measurements were used as indicators of sanitary sewage contamination. 
Boron concentrations were higher in industrial and commercial areas compared to residential areas, fluoride 
concentrations were higher during the summer sampling periods, while potassium was highest in older areas. No 
other patterns were apparent for these constituents.  
 
Heavy Metal and Organic Toxicant Measurements in Water and Sediment Samples  
The toxicity screening tests (using the Azur Microtox® method) conducted on both unfiltered and filtered water 
samples indicated a wide range of toxicity, with no obvious trends for season, land use, or age. About 60% of the 
samples were not considered toxic (less than a I25 light reduction of 20%, the light reduction associated with the 
phosphorescent bacteria after a 25 minute exposure to undiluted samples), about 20% are considered moderately 
toxic, while about 10% are considered toxic (light reductions of greater than 40%), and 10% are considered highly 
toxic (light reductions of greater than 60%). Samples from residential areas generally had greater toxicities than 
samples from commercial and industrial areas. Samples from newer areas were also more toxic than from older 
areas. Further statistical tests of the data indicated that the high toxicity levels were likely associated with periodic 
high concentrations of salt (in areas using deicing salt), heavy metals (especially filterable zinc, with high values 
found in most areas) and pesticides (associated with newer residential areas).  
 
Heavy metal concentrations have been evaluated in almost all of the water samples for copper, lead and zinc, and 
some filtered samples have been analyzed for chromium. From 564 to 674 samples (82 to 99% of all unfiltered 
samples analyzed) had detectable concentrations of these metals. Filterable lead concentrations in the water were as 
high as 173 µg/L, while total lead concentrations were as high as 810 µg/L. The winter Ameritech new residential 
areas had the highest zinc concentrations observed, with one value greater than 20,000 mg/L. The repeat samples 
from the following summer were much lower and more typical. The initially very high values may indicate 
increasing zinc concentrations as the water stands in the manholes for extended periods. Many of the zinc values 
were higher than 1,000 mg/L in both filtered and unfiltered samples. Some of the copper concentrations have also 
been high in both filtered and unfiltered samples (as high as 1,400µg/L). Chromium concentrations as high as 45 
µg/L were also detected.  
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About 390 sediment samples were analyzed for heavy metals. An ICP/MS was used to obtain a broad range of 
metals with good detection limits. The following list shows the median observed concentrations for some 
parameters in the sediments (expressed as mg of the metal per kg of dry sediment): 
 
 Aluminum 14,000 mg/kg 
 Barium  50 mg/kg 
 Calcium  17,000 mg/kg 
 COD   85,000 mg/kg 
 Chromium <10 mg/kg 
 Copper  100 mg/kg 
 Lead  200 mg/kg 
 Magnesium 5,000 mg/kg 
 Manganese 200 mg/kg 
 Nickel  <10 mg/kg 
 Strontium 35 mg/kg 
 Vanadium <10 mg/kg 
 Zinc  1,290 mg/kg 
 
The overall copper patterns indicate that the highest concentrations (over 1,000 µg/L) were found in samples 
obtained from older residential areas, especially in EPA rain zone 3, with almost as high copper values observed in 
some older commercial and industrial areas. Filtration did not significantly reduce the highest copper observations, 
but reduced most others by about 50%. Sediment from old areas had greater copper concentrations than sediment 
from new areas. 
 
Lead concentrations were also highest (about 1,000 µg/L) in older residential area water samples, while samples 
from some older commercial and industrial areas also had high values. Rain zone 3 summer and fall lead 
observations were substantially larger than corresponding winter and spring observations. A similar, but smaller, 
difference was also noted for zone 1. This pattern was especially obvious for older commercial and industrial 
samples collected by BellSouth. Filtration significantly reduced the lead concentrations by about 75%. Filtered 
samples from zone 3 collected during the summer and fall were still greater than the samples collected during the 
winter and spring. Sediment from old areas also had greater lead concentrations than sediment from newer areas. 
 
Residential area samples generally had larger zinc concentrations than the samples from commercial and industrial 
areas. Samples from the newest areas also had higher zinc concentrations compared to samples from older areas. 
Filtration reduced the highest zinc concentrations (about 3,600 µg/L) by about 20%, and most of the other values by 
about 35%. No overall patterns were observed for zinc concentrations in sediment samples.  
 
Water samples from more than 600 locations were analyzed and verified for base neutral and acid extractable 
organic toxicants. About 120 of these samples were partitioned by filtering to identify the quantity of organics 
associated with the particulates and how much is soluble. Very few detectable organics were found, especially in the 
filterable fraction, even with the GC/MSD method detection limits ranging from 2 to 5 µg/L. The most common 
organic compounds found are listed below: 
 
     di-n-butyl phthalate: detected in 3.0% of the unfiltered water samples, maximum concentration of 4.7 µg/L 
     benzylbutyl phthalate: detected in 1.2% of the unfiltered water samples, maximum concentration of 21 µg/L 
     bis(2-ethylhexyl) phthalate: detected in 1.2% of the unfiltered water samples, maximum concentration of 15 
µg/L 
     coprostanol: detected in 3.5% of the unfiltered water samples, maximum concentration of 80 µg/L 
 
The phthalate ester compounds are probably associated with plastic components in the sampling areas. Coprostanol 
was also detected in many of the samples. This compound is used to help identify the presence of fecal 
contamination as high concentrations may imply sanitary sewage contamination of the water or pet wastes. 
Obviously, the median concentrations of these compounds were below the detection limits. 



 

 68

 
Water samples from about 580 manholes were analyzed for pesticides, with about 50 also filtered for partitioning 
pesticide analyses. Again, the pesticides were only detected in small fractions of the samples analyzed, as shown 
below: 
 
     delta BHC: detected in 10.4% of the unfiltered water samples, maximum concentration of 5.7 µg/L 
     heptachlor: detected in 1.6% of the unfiltered water samples, maximum concentration of 0.58 µg/L 
     aldrin: detected in 4.3% of the unfiltered water samples, maximum concentration of 0.30 µg/L 
     endosulfan I: detected in 1.6% of the unfiltered water samples, maximum concentration of 0.04 µg/L 
     alpha chlordane: detected in 4.2% of the unfiltered water samples, maximum concentration of 0.11 µg/L 
     4,4’-DDE: detected in 14% of the unfiltered water samples, maximum concentration of 0.36 µg/L 
     endosulfan sulfate: detected in 1.0% of the unfiltered water samples, maximum concentration of 0.58 µg/L 
     4,4’-DDT: detected in 1.9% of the unfiltered water samples, maximum concentration of 0.06 µg/L 
     endrin ketone: detected in 3.0% of the unfiltered water samples, maximum concentration of 0.96 µg/L 
     methoxychlor: detected in 4.0% of the unfiltered water samples, maximum concentration of 0.2 µg/L 
 
Only two organic compounds were detected in more than 10% of the water samples (delta BHC and 4,4’-DDE). 
While only one pesticide had an observed concentration greater than 1 µg/L (delta BHC), some of these pesticide 
concentrations may be considered relatively high.  
 
One of the most striking features of the sediment samples was their visibly wide range of physical characteristics 
such as texture, color, and odor. The sediments ranged in texture from grainy sand to an extremely fine silt or 
sludge. Color ranged from clear quartz to white sand to red clay to black sludge. Multi-colored sheens were 
observed on a few sediment samples. Odor of the sediment samples ranged from no detectable odor to a scent of 
nutrient rich potting soil to clearly discernible diesel or other petroleum compounds, to sulfur and sewage. It was 
thought that these characteristics would be related to the presence of organic toxicants. 
 
An evaluation of the sediment collected from the telecommunication manholes revealed that most of the sediment 
was of silt to sand texture, and brown in color, indicating a relatively low level of organic contamination for most 
sediments analyzed. About 4% of the samples were clayey and black, indicating potentially high levels of organic 
contamination, while another 4% were clayey and red, also indicating the potential presence of high levels of 
organic contaminants. Another 25% are in a marginal category, being dark in color, but not of the finest texture. 
 
Simple Correlation Analyses 
Pearson correlations and other association analyses were conducted with the data to identify relationships between 
the different parameters. This was done to identify sets of parameters that could possibly be used as indicators of 
problematic conditions, especially by substituting simpler and less expensive analyses for more costly or time-
consuming analyses. Tables 12 and 13 summarize the significant correlations identified through typical Pearson 
correlation matrix analyses using SYSTAT, version 8. Pearson normalization removed the effects associated with 
the range and absolute values of the observations. Correlation coefficients approaching 1.0 imply near perfect 
relationships between the data. These tables show all of the correlation coefficients larger than 0.5, with those 
greater than 0.75 highlighted in bold. The pair-wise deletion option was also used to remove data in the analysis if 
data for one observation of a pair of parameters being compared was absent, but keeping the parameter in the 
complete table for other possible correlations. Also shown on these tables are the highly significant regression slope 
terms relating the dependent variables to the independent variables.  
 
Table 12 are correlation pairings that are also obvious, and possibly also useful as indicators. Most of the 
coefficients are relatively high (up to 0.98), indicating mostly strong correlations. These relationships are between 
obviously related parameters, such as between total solids (TS) and conductivity (Figure 40), which has a 
coefficient of 0.84. The “obvious” relationship between turbidity and suspended solids, however, is relatively poor, 
at only 0.53 (Figure 41). It is therefore possible to use conductivity as a good indicator of TDS for almost all 
conditions, but using turbidity as a indicator for SS is more problematic. There were also relatively high correlations 
between filtered and total forms of solids, toxicity, COD, and zinc. The correlations between total and filtered forms 
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of copper and lead were less, but still likely useful. The regression slope terms indicate that the filtered form of 
toxicity is about 91% of the unfiltered form, implying that very little toxicity reduction is accomplished with 
filtration. Of course, correlations between unfiltered and filtered constituents should generally be high, as the 
unfiltered concentrations should always be greater than the filtered concentrations.  
 
 
Table 12. Obvious and Useful Correlations 
 
Independent and Dependent Variables Pearson 

Coefficient 
Regression 
slope term 
 

TDS and total solids 0.98 1.03 
conductivity (µS/cm)and total solids 0.84 0.59 
conductivity (µS/cm) and TDS 0.85 0.57 
suspended solids and volatile total solids 0.60 0.58 
suspended solids and volatile suspended solids 0.70 0.45 
turbidity (NTU) and suspended solids 0.53 1.3 
volatile total solids and volatile TDS 0.65 0.49 
volatile total solids and volatile SS 0.86 0.61 
toxicity and filtered toxicity (both light decrease) 0.79 0.91 
COD and filtered COD 0.76 0.58 
zinc and filtered zinc (both µg/L) 0.78 0.69 
copper and filtered copper (both µg/L) 0.69 0.4 
lead and filtered lead (both µg/L) 0.69 0.2 
 
 
Table 13 shows the parameter correlations of additional interest, as these are not as obvious as those listed above. 
These correlations are generally weaker than those shown on the previous tables (these range from 0.5 to 0.75), but 
deserve further investigation. Especially interesting are the frequent correlations between the unfiltered and filtered 
forms of zinc and the total and unfiltered forms of toxicity, for example. Another useful correlation shown is 
between copper and lead, indicating the relatively common joint occurrence of these two heavy metals. 
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Figure 40. Strong correlation (0.84) between total solids and conductivity. 
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Figure 41. Weak correlation (0.53) between suspended solids and turbidity. 
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Table 13. Unexpected and Possibly Useful Correlations 
 
Independent and Dependent Variables 
 

Pearson 
Coefficient 

Regression 
slope term 
 

volatile TDS and hardness 0.66 1.3 
filtered COD and phosphate 0.57 0.021 
copper and lead (both µg/L) 0.52 0.32 
zinc (µg/L) and toxicity (light decrease) 0.50 0.046 
filtered zinc and toxicity (same as above) 0.55 0.058 
zinc and filtered toxicity (same as above) 0.50 0.045 
filtered zinc and filtered toxicity (same as above) 0.56 0.057 
nitrate and ammonia 0.74 0.16 
 
Complex Correlation Analyses 
Additional analyses were conducted to identify more complex relationships between the measured parameters. 
These analyses do not prove any cause and effect relationship between parameters and conditions, but they do 
support a “weight-of-evidence” approach for reasonable hypotheses developed through different and supporting 
statistical methods. The complex correlation procedures used here examine inter-relationships between possible 
groups of parameters, compared to the pair-wise only comparisons presented earlier. Analyses between sub-groups 
of measurements, separated by expected important factors, are also presented. 
 
One method to examine complex relationships between measured parameters is by using hierarchical cluster 
analyses. Figure 42 is a tree diagram (dendogram) produced by SYSTAT, version 8, using the water quality data for 
water samples collected from manholes. A tree diagram illustrates both simple and complex relationships between 
parameters. Parameters having short branches linking them are more closely related than parameters linked by 
longer branches. In addition, the branches can encompass more than just two parameters. The length of the short 
branches linking only two parameters are indirectly comparable to the correlation coefficients (very short branches 
signify correlation coefficients close to 1). The main advantage of a cluster analyses is the ability to identify 
complex relationships that cannot be observed using a simple correlation matrix.  
 
In Figure 42, the shortest branches connect TDS and TS. As noted previously, almost all of the total solids are 
dissolved for these samples. Conductivity is also closely related to both TDS and TS. Other simple relationships are 
comparable to the higher correlation coefficients shown previously (Zn and filtered Zn, VTS and VSS, ammonia 
and nitrates, COD and filtered COD, etc.). There are relatively few complex relationships shown on this diagram: 
total toxicity is closely related to filtered toxicity and then to zinc and filtered zinc; phosphate is closely related to 
both copper and filtered copper; and hardness is related to the volatile solids.  
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Figure 42. Dendogram showing complex relationships between monitored constituents  
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Another important tool to identify relationships and natural groupings of samples or locations is with principal 
component analyses (PCA). The data were auto-scaled before PCA in order to remove the artificially large 
influence of constituents having large values compared to constituents having small values. PCA is a sophisticated 
procedure where information is sorted to determine the components (usually constituents) needed to explain the 
variance of the data. Typically, very large numbers of constituents are available for PCA analyses with a relatively 
small number of sample groups desired to be identified. Component loadings for each principal component were 
calculated using SYSTAT, version 8, as shown in Table 14 (with the percent of the total variance explained for each 
component also shown). 
 
Table 14. Loadings for Principal Components 
Principal Component (% of 
total variance explained) 

1 
(20.8%) 

2 
(14.2%) 

3 
(10.1%) 

4 
(9.4%) 

5 
(7.7%) 

Total solids 0.771 -0.557 0.011 0.190 0.104 
TDS 0.723 -0.629 0.030 0.131 0.036 
SS 0.424 0.322 -0.111 0.311 0.353 
Turbidity 0.306 0.463 -0.110 0.381 0.381 
pH 0.106 0.117 -0.338 -0.416 -0.206 
Toxicity 0.269 0.173 0.339 0.154 -0.674 
COD 0.726 0.304 0.057 -0.052 -0.037 
Color 0.464 0.431 -0.059 -0.122 0.062 
Conductivity 0.649 -0.593 0.041 0.193 0.058 
Fluoride 0.280 -0.186 -0.177 -0.478 -0.045 
Nitrate 0.170 0.183 0.816 -0.283 0.181 
Phosphate 0.571 0.233 -0.154 -0.466 0.034 
Hardness 0.385 -0.291 0.046 0.041 -0.278 
Ammonia 0.107 0.088 0.821 -0.284 0.296 
Potassium 0.344 0.031 -0.179 -0.518 -0.124 
Zinc 0.206 0.355 0.265 0.370 -0.613 
Copper 0.521 0.523 -0.211 -0.103 -0.056 
Lead 0.298 0.488 -0.121 0.335 0.092 
 
 
These first five components account for about 65% of the total variance of the data. The first two components are 
mostly dominated by total solids, TDS, COD, conductivity, phosphate, and copper. The third component is 
dominated mostly by nitrate and ammonia, the forth component is dominated by potassium, while the fifth 
component is dominated by toxicity and zinc. 
 
Kurskal-Wallis nonparametric analyses were used like a one-way analysis of variance test to identify groupings of 
data that had significant differences between the groups, compared to within the groups. The groups examined 
were:  
 
 • Age  

new (50 to 130 observations)   
medium (65 to 150 observations) 
old (100 to 300 observations) 

 
 • Season 
  winter (90 to 225 observations) 
  spring (50 to 100 observations) 
  summer (80 to 175 observations) 
  fall (50 to 115 observations) 
 
 • Land Use 
  commercial (75 to 200 observations) 
  industrial (30 to 65 observations) 
  residential (100 to 335 observations) 
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 • Nearby traffic  
  light (85 to 160 observations) 
  medium (175 to 270 observations) 
  heavy (125 to 175 observations) 
 
 • EPA Rain Region 
  zone 1 (160 to 260 observations) 
  zone 2 (45 to 80 observations) 
  zone 3 (50 to 110 observations) 
  zone 4 (5 to 10 observations) 
  zone 5 (25 to 40 observations) 
  zone 6 (25 to 55 observations) 
  zone 7 (20 to 30 observations) 
  zone 8 (10 to 20 observations) 
 
The number of data observations for each group component are also shown in the above list and has a significant 
effect on the probability of having a statistically significant difference between some of the group category 
components. The number of observations for some of the parameters are less than indicated, especially for those 
having low detection frequencies, or for screening parameters that were not evaluated for all samples. Most of the 
groupings had a large and relatively even number of observations in each subgroup. However, a few of the 
subgroups had small counts (such as for a couple of the rain zones). Table 15 lists the probabilities that the observed 
concentrations are the same amongst all of the categories. Probabilities smaller than 0.05 are traditionally 
considered significant and are indicated in bold.  
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Table 15. Kurskal-Wallis Probabilities that Concentrations are the same in each Category 
mg/L, unless otherwise 
noted 

Total Number 
of Detectable 
Observations 
 

Age Season Land Use EPA Rain 
Region 

Total solids, mg/L 598 0.23 <0.001 0.53 <0.001 
TDS 596 0.67 <0.001 0.4 <0.001 
SS 483 0.009 0.25 0.36 0.21 
VTS 598 0.1 <0.001 0.32 <0.001 
VTDS 596 0.028 <0.001 0.13 <0.001 
VSS 410 0.46 0.093 0.25 <0.001 
Turbidity, NTU 598 0.67 <0.001 0.002 <0.001 
pH 598 0.03 <0.001 0.012 0.001 
Toxicity 394 0.007 0.086 0.14 <0.001 
Toxicity, filtered 384 0.001 0.29 0.024 0.001 
COD 596 0.048 <0.001 0.078 <0.001 
COD, filtered 595 0.001 <0.001 0.021 <0.001 
COD in sediment, mg/kg 320 0.006 0.79 0.005 <0.001 
Color, color units 595 0.026 0.032 0.035 <0.001 
conductivity, µS/cm 598 0.69 <0.001 0.53 <0.001 
Total coliforms, #/100 mL 224 0.1 <0.001 0.5 <0.001 
E. coli, #/100 mL 224 0.97 0.29 0.83 <0.001 
Enterococci, #/100 mL 224 0.55 0.001 0.18 0.018 
Fluoride, mg/L 594 0.57 <0.001 0.056 <0.001 
NO3 595 0.26 0.064 0.78 <0.001 
PO4 548 0.24 <0.001 0.36 <0.001 
Hardness 598 <0.001 <0.001 0.001 <0.001 
NH3 598 0.72 0.039 0.15 <0.001 
K 593 0.002 0.11 0.004 <0.001 
B 179 0.86 0.009 0.058 0.031 
Zn, µg/L 541 <0.001 0.25 <0.001 0.002 
Zn, filtered, µg/L 536 <0.001 0.19 0.041 0.003 
Zn in sediment, mg/kg 275 0.78 0.45 0.56 0.004 
Cu, µg/L 559 0.26 0.058 0.009 0.008 
Cu, filtered, µg/L 554 0.079 0.001 0.063 <0.001 
Cu in sediment, mg/kg 219 0.18 0.66 0.6 0.18 

Pb, µg/L 555 <0.001 0.013 0.029 0.005 
Pb, filtered, µg/L 552 0.002 0.003 0.004 0.084 
Pb in sediment, mg/kg 237 0.002 0.58 0.76 0.33 

Cr, µg/L 19 0.59 0.14 0.24 0.31 
Cr in sediment, mg/kg 105 0.14 0.001 0.46 <0.001 
Cd in sediment, mg/kg 45 0.055 0.023 0.091 0.11 

di-n-butyl phthalate, µg/L 19 0.46 0.21 0.27 0.19 

coprostanol, µg/L 23 0.061 0.62 0.71 0.15 
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The grouping that affected the most parameters was the EPA Rain Region, followed by the season, age, and lastly 
land use. The parameters affected by the most groupings were sediment accumulation, volatile total solids, filtered 
COD, hardness, potassium, and lead. Those affected by none of the groupings included chromium, and the organics 
(likely due to infrequent detections of these compounds). Zinc and copper sediment conditions were both affected 
by only one grouping each because of their relatively consistent concentrations found in all sediment samples.  
 
Grouped box and whisker plots were prepared for selected parameters and for each grouping that was identified as 
having a significant difference during the Kurskal-Wallis analyses. Figure 43 shows high phosphate averaged 
concentrations associated with the southwest sampling locations, and with summer and winter seasons. Low 
averaged concentrations were noted in the southeast (although the largest phosphate concentration found was at a 
southeastern location).  
 
Copper (Figure 44) had significant associations with different subcategories of region and land use. Copper (and 
lead) had very similar regional patterns, and copper, lead, and zinc all had higher average concentrations in 
residential areas.  
 
Table 16 summarizes these associations.  
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Table 16. Significant Kurskal-Wallis Groupings 
 Reasonable Associations Opposite to Expected 

Associations 
Total solids, mg/L Geographical area  
TDS, mg/L Geographical area, 

Season of sample collection 
 

Phosphate, mg/L Geographical area, 
Season of sample collection 

 

Total coliforms, #/100 
mL 

Geographical area, 
Season of sample collection 

 

E. coli, #/100 mL Geographical area  
Enterococci, #/100 mL Geographical area, 

Season of sample collection 
 

Toxicity, I25, % light 
reduction 

 Age of surrounding area 

Copper, µg/L Geographical area, 
Land use 

 

Lead, µg/L Geographical area, 
Land use 
Season of sample collection 
Age of surrounding area 

 

Zinc, µg/L Geographical area, 
Land use 

Age of surrounding area 

  
Possible spurious correlations obviously occurred, although most of the associations appear reasonable and support 
the experimental design that directed the sampling effort. The age notation was periodically problematic for the field 
crews as it was sometimes difficult to obtain a reasonable estimate in areas that were very diverse.  
 
Model Building 
The most reasonable correlations (region, land use, age, and season) were used in these analyses to construct 
predictive models, based on the full-factorial sampling effort. The expanded geographical coverage, due to later-
joining project participants from throughout the nation, allowed a geographical factor to also be considered in the 
final analyses. The sampling effort did not include a sufficient or representative number of areas to be sampled 
having other varying conditions of other potentially interesting factors. Therefore, the model building process was 
based solely on the full 24 factorial design using region, land use, age, and season, as the main factors, plus all 
possible interactions.  
 
Since the experimental design was a full two-level factorial design, the following groupings were used to define the 
two levels used for each main factor, based on the number of observations in each grouping, the previous grouping 
evaluations, and the initial exploratory data analyses: 
 
 • age: old and medium combined (group A), vs. new (group B) 
 • season: winter and fall combined (group A), vs. summer and spring combined  

  (group B) 
 • land use: commercial and industrial areas combined (group A), vs. residential  

  areas (group B) 
 • region: EPA rain regions 1, 2, 8, and 9 (northern tier) (group A), vs. regions 3,  

  4, 5, 6, and 7 (milder) (group B) 
 
The 597 sets of data observations used for this analysis were therefore divided into 16 categories corresponding to 
the complete factorial design, as shown in Table 17. Some samples did not have the necessary site information 
needed to correctly categorize the samples and were therefore not usable for these analyses. The “Group A” 
categories were assigned “+” values and the “Group B” categories were assigned “-” values in the experimental 
design matrix for the main factors. These 16 factorial groups account for all possible combinations of the four main 
factors. Twelve to more than 100 samples were represented in each factorial group and were used to calculate the 
means and standard errors. 
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Table 17. Factorial Design for Manhole Water and Sediment Characteristics 
group Number of 

observations 
in group 

region land 
use 

age season region x 
land 
use 

region x 
age 

region x 
season

land use x 
age 

land use x 
season 

age x 
season 

region x 
land use x 
age 

region x 
land use x 
season 

region x 
age x 
season 

land use x 
age x 
season 

region x 
land use x 
age x 
season 

  R L A S RL RA RS LA LS AS RLA RLS RAS LAS RLAS 

1 65 + + + + + + + + + + + + + + + 
2 50 + + + - + + - + - - + - - - - 
3 13 + + - + + - + - + - - + - - - 
4 13 + + - - + - - - - + - - + + + 
5 113 + - + + - + + - - + - - + - - 
6 70 + - + - - + - - + - - + - + + 
7 13 + - - + - - + + - - + - - + + 
8 12 + - - - - - - + + + + + + - - 
9 41 - + + + - - - + + + - - - + - 
10 36 - + + - - - + + - - - + + - + 
11 22 - + - + - + - - + - + - + - + 
12 19 - + - - - + + - - + + + - + - 
13 42 - - + + + - - - - + + + - - + 
14 47 - - + - + - + - + - + - + + - 
15 21 - - - + + + - + - - - + + + - 
16 20 - - - - + + + + + + - - - - + 
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Table 18. Results of Full Factorial Statistical Tests on Characteristics of Water and Sediment Samples  
  Total 

Solids 
(mg/L) 

Dissolved 
Solids 
(mg/L) 

Volatile 
Total 
Solids 
(mg/L) 

     
Overall average: 957.84 884.96 157.67 
Total number of observations: 590 588 590 
    
Calculated polled standard error: 489.23 470.53 101.11 
Standard error from high level interactions: 75.82 76.11 16.51 
  
region R 700.34 678.59 92.78 
land use L 127.88 119.74 19.09 
age A 90.01 63.86 -27.72 
season S 23.94 15.19 -17.96 
region x land use RL 195.61 216.54 9.55 
region x age RA -8.82 -50.23 -16.27 
region x season RS 5.38 21.47 -26.46 
land use x age LA 115.83 112.09 38.23 
land use x season LS -119.01 -125.23 -24.96 
age x season AS 44.41 25.81 5.36 
region x land use x age RLA -69.60 -76.00 30.84 
region x land use x season RLS 23.94 15.19 -17.96 
region x age x season RAS 81.66 68.50 0.88 
land use x age x season LAS -57.77 -60.19 8.43 
region x age x land use x 
season 

RALS -115.40 -121.00 -4.12 
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Table 18. Results of Full Factorial Statistical Tests on Characteristics of Water and Sediment Samples (cont.) 
 
  Volatile 

Dissolved 
Solids 
(mg/L) 

Volatile 
Suspended 
Solids 
(mg/L) 

Suspended 
Solids 
(mg/L) 
(direct) 

% Volatile 
Solids of 
sediment 

Turbidity 
Unfiltered 
(NTU) 

Turbidity 
Filtered 
(NTU) 

Toxicity 
Unfiltered 
(I25% 
Red) 

Toxicity 
Filtered 
(I25% 
Red) 

COD 
Unfiltered 
(mg/L) 

COD 
Filtered 
(mg/L) 

            
Overall average: 129.95 51.04 52.81 6.67 28.52 1.50 44.96 44.74 30.80 21.24 
Total number of observations: 588 406 540 357 590 590 389 380 588 587 
           
Calculated polled standard error: 88.98 70.46 50.58 3.02 30.07 1.09 17.02 16.95 18.27 13.94 
Standard error from high level interactions: 10.62 15.30 11.27 0.94 6.11 0.25 5.58 4.31 4.40 2.60 
            
region R 81.74 15.77 11.15 2.65 18.72 0.26 -12.25 -5.74 -13.72 -7.71 
land use L 0.19 28.89 -19.23 -0.20 -19.27 -0.75 -9.23 -14.91 -0.21 -0.67 
age A -40.60 17.26 11.20 2.00 5.52 -0.16 -8.14 -13.54 -4.29 -7.61 
season S -21.48 -4.41 18.98 -1.81 7.06 -0.36 -6.17 -3.29 -0.84 -1.55 
region x land use RL 10.17 7.74 -25.70 1.46 -16.68 -0.19 6.91 -0.34 -0.90 0.73 
region x age RA -42.08 41.10 31.68 -1.17 14.91 -0.11 7.13 1.11 4.57 2.64 
region x season RS -17.99 -2.26 -14.79 -0.43 -7.70 -0.29 5.19 0.41 3.09 4.73 
land use x age LA 32.11 8.07 -17.18 -1.85 -8.14 0.25 0.99 6.23 -9.35 -4.49 
land use x season LS -16.63 -6.12 -18.13 0.21 -5.79 0.46 2.88 6.45 -3.59 -2.13 
age x season AS -1.55 9.76 -0.50 0.58 0.60 0.29 2.55 6.02 1.81 0.31 
region x land use x age RLA 6.65 32.73 -3.61 -0.01 -0.40 0.13 -6.26 -3.14 3.99 2.66 
region x land use x season RLS -21.48 -4.41 18.98 -1.81 7.06 -0.36 -6.17 -3.29 -0.84 -1.55 
region x age x season RAS -4.05 -1.62 6.25 0.95 3.85 0.25 -8.72 -8.05 -8.17 -4.12 
land use x age x season LAS 3.39 7.52 0.82 0.05 -7.96 -0.21 -0.88 -2.70 2.69 1.60 
region x age x land use x 
season 

RALS -5.49 -4.59 -14.90 0.41 -7.62 -0.27 -1.29 -0.05 2.48 2.17 

 



 

 82

Table 18. Results of Full Factorial Statistical Tests on Characteristics of Water and Sediment Samples (cont.) 
 
  COD mg/kg 

dry 
sediment 

pH Color 
Unfiltered 

Color 
Filtered 

Conductivity 
(µS/cm) 

Total Coliform 
(MPN/100 mL) 

E. coli 
(MPN/100 mL) 

Enterococci 
(MPN/100 mL) 

Fluoride (mg/L)

           
Overall average: 105200.92 8.59 49.19 27.66 1385.60 2056.96 171.56 398.13 0.39 
Total number of observations: 333 590 590 590 590 225 225 225 586 
          
Calculated polled standard error: 66053.07 7.95 49.48 24.69 742.01 1119.82 463.24 903.42 0.12 
Standard error from high level interactions: 12760.55 1.97 12.98 

 
5.60 129.75 621.91 129.53 326.53 0.05 

           
region R 78579.17 1.88 -4.32 -18.81 1151.67 458.14 198.71 -35.17 -0.05 
land use L 4532.72 2.11 -11.37 3.53 205.59 343.48 52.80 155.47 0.04 
age A 16182.47 1.95 -11.94 -12.61 30.29 -539.18 7.47 -399.15 0.00 
season S -16815.29 -1.76 -5.17 3.27 244.08 -1103.80 -204.06 -363.19 -0.09 
region x land use RL 17137.33 2.10 -16.03 -5.64 450.21 -275.52 59.43 26.35 0.02 
region x age RA -20079.08 1.98 3.98 7.11 45.29 137.95 -61.74 128.68 -0.05 
region x season RS -11711.43 -2.06 -20.74 -4.58 -82.80 -1172.79 -204.99 -281.17 -0.02 
land use x age LA -24373.31 2.00 -4.28 -10.80 86.87 -859.77 -104.25 -254.48 0.05 
land use x season LS -568.16 -2.11 11.58 4.31 -12.40 -693.41 -118.71 -433.02 -0.02 
age x season AS 21520.74 -2.03 -1.50 -3.35 16.03 662.65 70.36 241.13 0.03 
region x land use x age RLA -7907.59 2.07 18.68 8.21 -7.55 -101.03 -137.66 -204.62 -0.04 
region x land use x season RLS -16815.29 -1.76 -5.17 3.27 244.08 -1103.80 -204.06 -363.19 -0.09 
region x age x season RAS 8863.49 -2.07 10.86 1.94 118.46 108.51 113.09 140.94 0.05 
land use x age x season LAS -14278.79 -1.98 -18.07 -6.58 48.34 271.91 90.94 549.46 0.01 
region x age x land use x 
season 

RALS 13652.07 -1.97 -4.66 5.61 -90.35 -787.03 47.31 -193.72 0.03 
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Table 18. Results of Full Factorial Statistical Tests on Characteristics of Water and Sediment Samples (cont.) 
 
  Nitrate (mg/L) Phosphate 

(mg/L) 
Hardness 
(mg/L as 
CaCO3) 

Ammonia 
(mg/L) 

Potassium 
(mg/L) 

Boron (mg/L) Zinc 
Unfiltered 
(µg/L) 

Zinc Filtered 
(µg/L) 

          
Overall average: 3.06 0.31 273.14 0.37 14.37 0.31 648.57 498.81 
Total number of observations: 589 542 590 590 588 180 533 528 
         
Calculated polled standard error: 8.09 0.31 107.02 1.74 13.99 0.52 269.34 247.20 
Standard error from high level interactions: 2.02 0.07 21.68 0.43 2.07 0.13 89.21 91.39 
          
region R 0.28 -0.10 31.82 0.49 -9.10 0.14 -223.83 -122.58 
land use L 1.93 -0.15 -16.74 0.37 0.63 0.21 -246.26 -101.69 
age A -2.80 0.19 -67.88 -0.39 2.42 -0.09 -252.09 -230.57 
season S 1.74 0.04 -32.70 0.45 -0.43 0.06 -124.14 -135.70 
region x land use RL 2.21 0.12 27.76 0.39 0.80 0.21 32.86 13.69 
region x age RA -0.75 -0.14 -38.35 -0.39 -0.56 -0.12 119.95 34.16 
region x season RS 2.44 -0.08 4.28 0.48 1.40 0.12 34.49 28.42 
land use x age LA -2.29 -0.21 80.70 -0.50 -1.92 -0.05 46.59 20.31 
land use x season LS 1.28 -0.07 -1.84 0.40 -3.49 0.15 33.52 -2.17 
age x season AS -0.89 0.09 6.02 -0.40 -2.45 -0.11 81.38 114.03 
region x land use x age RLA -1.77 0.13 -15.64 -0.39 -2.98 -0.14 -77.87 -79.89 
region x land use x season RLS 1.74 0.04 -32.70 0.45 -0.43 0.06 -124.14 -135.70 
region x age x season RAS -2.64 0.01 -23.42 -0.37 3.01 -0.15 -127.26 -96.63 
land use x age x season LAS -1.38 -0.05 17.47 -0.46 -1.77 -0.16 14.34 69.00 
region x age x land use x 
season 

RALS -2.30 0.01 -13.45 -0.46 0.21 -0.11 43.75 53.51 
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Table 18. Results of Full Factorial Statistical Tests on Characteristics of Water and Sediment Samples (cont.) 
 
  Zinc 

sediment 
(mg/kg) 

Copper 
Unfiltered 
(µg/L) 

Copper 
Filtered 
(µg/L) 

Copper 
sediment 
(mg/kg) 

Lead 
Unfiltered 
(µg/L) 

Lead 
Filtered 
(µg/L) 

Lead 
sediment 
(mg/kg) 

         
Overall average: 3103.21 33.29 16.39 332.35 19.91 4.91 3178.74 
Total number of observations: 271 552 546 215 547 544 233 
        
Calculated polled standard error: 3347.84 33.60 20.36 na 17.99 4.77 na 
Standard error from high level interactions: 841.43 4.02 3.81 142.50 4.99 1.00 4537.82 
         
region R -80.81 -18.45 -16.63 -94.26 -4.57 -3.59 -4786.67 
land use L -1410.25 -19.08 -9.93 23.15 -10.43 -2.74 -4718.76 
age A -86.31 26.72 11.44 299.02 9.47 2.22 -3578.94 
season S -806.70 2.65 5.54 -183.44 3.31 1.68 4510.31 
region x land use RL 5.26 17.28 9.14 64.67 1.92 0.68 4588.65 
region x age RA -780.38 -9.25 -10.54 -135.48 3.76 -0.43 4451.73 
region x season RS 884.05 -9.42 -1.95 156.63 -4.55 -1.06 -4318.80 
land use x age LA 1021.87 -22.25 -8.17 -80.36 -5.67 -1.51 4490.85 
land use x season LS 357.50 -3.80 -4.51 -39.55 -2.59 -1.96 -4702.65 
age x season AS 469.26 0.93 2.05 -155.72 -2.02 -0.44 -4767.03 
region x land use x age RLA 128.72 7.27 6.13 -18.72 -7.09 0.55 -4459.42 
region x land use x season RLS -806.70 2.65 5.54 -183.44 3.31 1.68 4510.31 
region x age x season RAS -192.21 -0.25 -0.03 226.68 6.29 1.08 4874.38 
land use x age x season LAS -725.52 0.75 0.07 40.99 3.15 0.10 4669.87 
region x age x land use x 
season 

RALS 1519.59 -4.49 2.09 120.25 -3.71 0.84 -4142.03 
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The factorial analyses were conducted using the group means. In addition, all parameters were also transformed by 
log10 to account for their correct log-normal data distributions. Table 18 shows the results of these analyses. Ten 
parameters were found to have significant models, with the most commonly occurring significant factor being the 
geographical region. Several parameters had significant interacting factors. All of the calculated effects for each 
parameters were plotted on probability plots (examples shown on Figures 45 through 47) to confirm the significant 
factors, which are indicated in bold type on Table 18. 
 
Ten models were identified that had significant factors or combinations of factors. These models are listed below, 
along with the calculated values corresponding to the different levels for the significant factors: 

 
 Models with significant regional factors alone: 
 R+ (northern tier 

states) 
R- (milder 
climate) 

Total solids (mg/L) = 958 + 350 R 1308 mg/L 608 mg/L 
TDS (mg/L) = 885 + 339 R 1224 mg/L 546 mg/L 
Volatile total solids (mg/L) = 158 + 46 R 204 mg/L 112 mg/L 
Volatile dissolved solids (mg/L) = 130 + 82 R 172 mg/L 88 mg/L 
Sediment COD (mg/kg) = 105,200 + 39,300 R 144,500 mg/L 65,900 mg/L 
Conductivity (µS/cm) = 1390 + 576 R 1960 µS/cm 810 µS/cm 
Potassium (mg/L) = 14.4 – 4.6 R 9.8 mg/L 18.9 mg/L 
 
 
Model with significant land use and age effects alone: 
 L+ and 

A+  
L+ and 
A- 

L- and 
A+ 

L- and 
A- 

Filtered toxicity (I25%) = 44.7 – 7.5 L – 6.7 A 30.5 % 44.1 % 45.4 % 60.0 % 
 
 
 Models with significant land use and age interactions alone: 
 LA+  LA-  
Hardness (mg/L as CaCO3) = 273 + 40 LA 313 mg/L 233 mg/L 
 
 
Model with complex interactions with regional, land use, and season factors: 
 RLS+ RLS- 
Ammonia (mg/L) = 0.37 + 0.23 RLS 0.60 mg/L 0.14 mg/L 
 
 
The effects and interactions are described below: 
 
L+ and A+ (commercial or industrial and medium or old) 
L+ and A- (commercial or industrial and new) 
L- and A+ (residential and medium or old) 
L- and A- (residential and new) 
 
RLA+ (northern tier states and commercial or industrial and old; northern tier states and residential and new; milder 
climate and commercial or industrial and new; milder climate and residential and old) 
RLA- (northern tier states and commercial or industrial and new; northern tier states and residential and old; milder 
climate and commercial or industrial and old; milder climate and residential and new) 
 
RLS+ (northern tier states and commercial or industrial and winter; northern tier states and residential and summer; 
milder climate and commercial or industrial and summer; milder climate and residential and winter) 
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RLS- (northern tier states and commercial or industrial and summer; northern tier states and residential and winter; 
milder climate and commercial or industrial and winter; milder climate and residential and summer) 
 
Obviously, the more complex interactions are more likely to be random, but the two-way interactions, and 
especially models having one or two main factors, are much more likely. The models containing only a single factor 
were mostly identified as being significant during the earlier described statistical tests.  
 
Residual analyses were also conducted for each of these models, as shown on Figures 48 and 49. The predicted 
values were compared against all 597 data observations and their differences were plotted on probability plots. 
Legitimate models would produce residual probability distributions that are mostly random in nature (a straight line 
on a probability plot). These residual plots show that, in many cases, the upper 15 to 25 percent of the data are not 
adequately explained by the models. The models are therefore most useful to describe more typical conditions, from 
the lowest values to the 75th, or possible higher, percentiles. The most extreme conditions that were observed in 
each category were more associated with factors other than those included in these models. As noted previously, 
much additional information was gathered and used in the simpler statistical tests previously presented that 
examined these other factors, but these other data were not adequately represented in each of the 16 major data 
grouping used in these factorial analyses. The following section examines the extreme conditions in more detail to 
attempt to identify patterns associated with the manholes that had the poorest water and sediment quality.  
 
 
 



 

88 

 

 
Figure 43. Statistically significant groupings for “phosphate” concentrations found in sampled 
water. 
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Figure 44. Statistically significant groupings for “copper” concentrations found in sampled water. 

 
 
Figure 45. Significant main and interacting factors for solids concentrations in sampled water.
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Figure 46. Significant main and interacting factors for common constituent concentrations in 
sampled water.
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Figure 47. Significant main and interacting factors for potassium concentrations and toxicity in 
sampled water.
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Figure 48. Residuals for significant factorial models. 
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Figure 49. Residuals for significant factorial models (cont). 
 
 
 
Figure 50 contains several very different plots that all have identical R2 values. The use of the index of 
determination by itself can be misleading (data from Anscombe, in Draper and Smith 1981). The need for residual 
plots to confirm the regression assumptions and to visually examine the data, plus the use of ANOVA for evaluating 
the resulting regression equations is obviously critical. 
 
As noted above, examination of the model residuals is a critical part of a model building exercise. When least-
squares regression is used, residual analyses assist in confirming the requirements of the statistical test: 
 

• the residuals are independent 
• the residuals have zero mean 
• the residuals have a constant variance (S2) 
• the residuals have a normal distribution (required for making F-tests)  

 
The residual analyses include several steps: 
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• Check for normality of the residuals (preferably by constructing a probability plot on normal probability 
paper and having the residuals form a straight line, or at least use an overall plot, 
• plot the residuals against the predicted values, 
• plot the residuals against the predictor variables, and 

 
• plot the residuals against time in the order the measurements were made.  

 
 
Figure 51 are example residual analysis plots, while Figure 52 shows several types of resulting patterns (Draper and 
Smith 1981). Only an even band is desired. Any curvature or tapering is undesirable and can likely be improved 
with data transformations. 



 

96 

 

 
 
 

 
Figure 50. Example residual analysis plots (Draper and Smith 1981).
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Figure 51. Possible residual patterns, only (a) is desired (Draper and Smith 1981).
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Figure 52. The use of the index of determination (R2) can be misleading (data from Anscombe, in 
Draper and Smith 1981).
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“Outliers” and Extreme Observations 
Outliers are commonly detected using various statistical analyses and then eliminated from the data set to make 
analyses for straight forward and convenient. However, data should only be eliminated after much further 
examination, as extreme values may include highly valuable information. The following discussion presents an 
examination of the extreme values found during these monitoring activities. 
 
As noted above, the factorial models developed for predicting the quality of water were not generally suited for the 
worst (extreme) cases. Since these situations are typically of high interest, further statistical analyses were 
conducted to identify patterns and conditions associated with these special locations. The most important water 
quality constituents (based on potential exceedences of criteria) were used to rank each location. The rankings were 
then averaged to identify the locations having the poorest quality water. The water quality constituents used for 
these rankings were as follows: 
 
 • Suspended solids 
 • Turbidity 
 • Conductivity 
 • Volatile total solids    
 • pH 
 • COD 
 • Phosphate 
 • Ammonia 
 • Nitrate 
 • Toxicity 
 • Copper 
 • Filtered copper 
 • Lead 
 • Filtered lead 
 • Zinc 
 • Filtered zinc 
 
The observed water quality was ranked according to these constituents and the top ten percent where when 
compared to the other 90%. The locations selected in this group of high constituent values are shown on Table 19. 
Most EPA rain regions and all participating companies are represented in the list. In addition, about half of the 
samples were from locations during repeat samplings at other seasons. Since the areas were sampled during 
pumping operations, the repeated poor quality water found in these locations indicates that the sources of the poor 
quality water were relatively consistent for these areas and not the result of a single contaminating incident.  
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Table 19. Manholes Containing the Highest Water Quality Concentrations 
 
Location EPA Rain 

Region 
Season Age Land Use 

Ameritech     
4610 Tokay Blvd, Madison, WI 1 winter old resid 
4610 Tokay Blvd, Madison, WI 1 summer old resid 
402 Franklin St., Madison, WI 1 winter old resid 
402 Franklin St., Madison, WI 1 summer old resid 
5301 Cottage Grove Road, Madison, WI 1 winter medium resid 
575 Science Dr., Madison, WI 1 winter new indus 
Agriculture Drive, Madison, WI 1 summer new resid 
     
1548 Carolina, Gary, IN 1 winter old resid 
East 56th & Rosslyn, Indianapolis, IN 1 winter old resid 
     
White & Edward Streets (NE corner), Frankfort, IL 1 winter old commer 
Rte. 30 & School House Road (NE Corner), New Lenox, IL 1 summer old resid 
     
Scovel between Grand Blvd & Vinewood, Detroit, MI 1 summer old resid 
Grand River & Mackinaw, Detroit, MI 1 summer old commer 
Old Fort & Woodruff, Rockwood, MI 1 summer new resid 
Toledo-Dix South of Eureka, Southgate, MI 1 summer old commer 

     

AT&T     
12th Avenue No. between 31st and 320 Streets, Billings, MT 8 summer old resid 
MH #11672 - Highway 3, Billings, MT 8 summer new commer 
Virginia Lane and Cotton Blvd., Billings, MT 8 summer old resid 
     
19th & 20, Omaha, NE 9 winter old commer 
6th Street & Willow, Omaha, NE 9 summer old resid 
MH #21 27th & 20, Omaha, NE 9 summer old commer 
MH #22 29th & 20, Omaha, NE 9 summer old commer 
     
MH #112, Angelica, St Louis, MO 4 winter old commer 
MH #322, St. Louis, MO 4 winter new resid 
Highway 61/67, St. Louis, MO 4 summer new resid 
MH #270, Vickers, St. Louis, MO 4 summer old commer 
MH # 04, HW55 & Richardson Rd, St. Louis, MO 4 summer new commer 
     

Bell Atlantic     
Rte. 123 N & Old Meadow Rd., McLean, VA 2 summer medium resid 
Rte. 123 N & Old Meadow Rd., McLean, VA 2 winter medium resid 
     
Marlboro Pike & Green Landing Rd., Prince Georges Cty., MD 2 summer medium resid 
Marlboro Pike & Green Landing Rd., Prince Georges Cty., MD 2 spring medium resid 
     
25 Plymouth St. (N of Rte. 46), Fairfield, NJ 1 spring New commer 
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Table 19. Manholes Containing the Highest Water Quality Concentrations (cont.) 
 
Location EPA Rain 

Region 
Season Age Land Use 

BellSouth     
8825 Jasper Rd., Jacksonville, FL 3 spring old resid 
8825 Jasper Rd., Jacksonville, FL 3 summer old resid 
8825 Jasper Rd., Jacksonville, FL 3 fall old resid 
8825 Jasper Rd., Jacksonville, FL 3 winter old resid 
NW 5th St. & 139th Av., Ft. Lauderdale, FL 3 spring new commer 
NW 5th St. & 139th Av., Ft. Lauderdale, FL 3 summer new commer 
NW 5th St. & 139th Av., Ft. Lauderdale, FL 3 fall new commer 
Silver Palm Blvd. & NW 126th, Ft. Lauderdale, FL 3 summer new resid 
Silver Palm Blvd. & NW 126th, Ft. Lauderdale, FL 3 fall new resid 
Silver Palm Blvd. & NW 126th, Ft. Lauderdale, FL 3 winter new resid 
Westward & Lenape Dr., Miami, FL 3 summer old resid 
Westward & Lenape Dr., Miami, FL 3 fall old resid 
4800 NW 102nd Av., Miami, FL 3 spring new resid 
Coptek Rd., Pensacola, FL 3 summer new indus 
     

GTE     
MH 0600056, Highway 45 S/LP#2 - Rantoul, IL 1 spring medium commer 
MH 0600119, Rt 45 S, End of AF#1 - Rantoul, IL 1 fall medium resid 
MH 1807, GE Rd - Bloomington, IL 1 fall medium resid 
MH-1-DK-IL 1 winter     
     
47th & Rucker, Everett, WA 7 fall old resid 
NE Dallas & NE 14th Avenue, Camas, WA 7 fall medium resid 
     

NYNEX     
2011 Flatbush Av., Brooklyn, NY 1 winter old commer 
2011 Flatbush Av., Brooklyn, NY 1 spring old commer 
51st St. & 19th Av., Brooklyn, NY 1 summer old resid 
51st St. & 19th Av., Brooklyn, NY 1 fall old resid 
Dahill Rd. & 20th Av., Brooklyn, NY 1 winter old resid 
North St. (across from St. Agnes Hosp.), White Plains, NY 1 winter old commer 
Washington St. & Hudson St., Peekskill, NY 1 summer old resid 
     

PacBell     
University Avenue & Lowell Street, La Mesa, CA 6 summer old commer 
University Avenue & Lowell Street, La Mesa, CA 6 winter old commer 
Green River Road & Crest Ridge Drive, Corona, CA 6 summer new resid 
Green River Road & Crest Ridge Drive, Corona, CA 6 winter new resid 
River Road & Archilbald Avenue, Norco, CA 6 summer new  
Navajo Road & Park Ridge Street, San Diego, CA 6 winter new resid 
     

SNET     
Norwalk Company Office, Washington St., Norwalk, CT 1 winter old commer 
Wolcott Hill Rd. corner of Reed St., Weathersfield, CT 1 winter old resid 
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Table 19. Manholes Containing the Highest Water Quality Concentrations (cont.) 
 
Location EPA Rain 

Region 
Season Age Land Use 

U.S. West     
875 N. Beck Street (300 West), Salt Lake City, UT 8 winter old commer 
875 N. Beck Street (300 West), Salt Lake City, UT 8 summer old commer 
53 East Orpheum Ave (150 South), Salt Lake City, UT 8 winter old indus 
53 East Orpheum Ave (150 South), Salt Lake City, UT 8 summer old indus 
     
7th Street & Winged Foot, Phoenix AZ 6 summer new commer 

 
 
Two-way cross-tabulations were used with SYSTAT, version 8, to identify groupings that were different for these 
top ten percent of the manholes compared to the other 90 percent of the data. The AT&T sites were not included in 
the analysis due to their being collected after the analyses were completed. The groupings examined were site 
characteristics noted on the field forms and included: 
 
 • EPA rainfall region 
 • Season of sample collection 
 • Age of surrounding area 
 • Land use of surrounding area 
 • Traffic in vicinity 
 • Site topography near manhole 
 • Road type 
 
 • Water odor 
 • Water clarity 
 • Water color 
 • Presence of surface sheen on water 
 
 • Sediment odor 
 • Sediment color 
 • Sediment texture 
 
 
Pearson Chi-square statistics and the probabilities that the data subsets had the same distributions between the 
different groupings were calculated by SYSTAT, as shown on Table 20. The only groups that had significantly 
different groupings between the set of extreme observations and the rest of the observations (probabilities ≤ 0.05) 
were: 
 
• Land use (more residential areas in the extreme group, and more commercial and industrial areas for the other 
90% of the samples, opposite to what was originally expected) 
 
• Water clarity (more cloudy and dark water in the extreme group and more clear water for the other 90% of the 
samples, as would be expected) 
 
• Water color (more light, moderate, dark, and turbid water in the extreme group and more clear water for the other 
90% of the samples, as would be expected) 
 
• Sediment texture (more fine clay in the sediment for the extreme group and more coarser silt and sand in the 
sediment for the other 90% of the samples, as would be expected) 
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• Site topography (more moderate and steep slopes for the extreme group and more flat slopes for the other 90% of 
the samples, for unknown reasons) 
 
These findings can be used to indicate a greater likelihood of high water quality constituent concentrations for water 
found in telecommunication manholes. It is recommended that areas having noticeable color and/or turbidity, along 
with sediments having a muddy texture (especially in residential areas) be given special attention.  
 
Unfortunately, the use of these characteristics as the only screening tool results in substantial false negatives and 
false positives. As an example, combinations of these characteristics were compared to the complete set of samples, 
with the results summarized in Table 21. As the screening components increased, the number of hits was decreased, 
with increased “efficiency.” The efficiency is calculated as the ratio of the rate of correct hits to total problem sites, 
compared to the total number of hits to the total number of sites. As an example, if 25% of the total sites were 
targeted (hits) and 50% of the problem sites were included in these hits, the efficiency would be 2.0. If the 
efficiency approaches 1.0, the number of problem sites identified is close to what would be expected with a random 
sampling, with no real benefit from using the screening criteria. As more criteria are included in the screening 
effort, the efficiency generally increases, but, unfortunately, so does the number of false negatives (ignores actual 
problems). The best plan may be to minimize the number of false negatives, while having a large efficiency factor. 
In this case, the use of color or land use may be best, if false negatives are to be reduced the most. If the largest 
number of correct hits of problem sites is desired for the least effort, then the combination of clarity, color, and 
texture is best (but with large numbers of false negatives because many problem sites will be missed).  
 
As indicated, locations having colored and/or turbid water, especially with muddy sediments, should be examined 
more. Manholes located in residential areas (apparently especially newer areas) may also warrant additional 
attention, likely due to contaminated runoff water from landscaping maintenance operations. 
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Table 20. Cross-Tabulations of Sampling Area Characteristics Comparing Extreme Observations with Other 
Observations 
EPA Rain Region Other 90% of samples Upper 10% of samples Total % Total number 

1  42.599%  48.333% 43.160% 265 
2  14.079  6.667 3.355 82 
3 and 4  19.495  23.333 19.870 122 
5 and 9  7.220  0.000 6.515 40 

 6  8.484  11.667 8.795 54 
 7  5.415  3.333 5.212 32 
 8  2.708  6.667 3.094 19 

Total %  100.000%  100.000% 100.000%  
Total number  554  60 614  

  

  Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 11.189 6.000 0.083 
  
 

Season Other 90% of samples Upper 10% of samples Total % Total number 
winter 37.184% 35.000% 36.971% 227 
spring 15.704 11.667 15.309 94 

summer 27.798 38.333 28.827 177 
fall 19.314 15.000 18.893 116 

Total % 100.000% 100.000% 100.000%  
Total number 554 60 614  

  

Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 3.264 3.000 0.353 
   
 

Age of area Other 90% of samples Upper 10% of samples Total % Total number 
new 21.561% 28.814% 22.278% 133 

medium 26.580 15.254 25.461 152 
old 51.859 55.932 52.261 312 

Total % 100.000% 100.000% 100.000%  
Total number 538 59 597  

  
Test statistic Value df Probability that groups 

are the same 
Pearson Chi-square 4.103 2.000 0.129 

  
 

Land use Other 90% of samples Upper 10% of samples Total % Total number 
commercial 44.853% 29.310% 43.355% 261 

industrial 11.765 6.897 11.296 68 
residential 43.382 63.793 45.349 273 

Total % 100.000% 100.000% 100.000%  
Total number 544 58 602  

   

Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 8.835 2.000 0.012 
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Table 20. Cross-Tabulations of Sampling Area Characteristics Comparing Extreme Observations with Other 
Observations (cont.) 

Water odor Other 90% of samples Upper 10% of 
samples Total % Total number 

none 93.721% 92.683% 93.631% 441 
other 0.930 2.439 1.062 5 

gasoline 1.163 2.439 1.274 6 
sewage 4.186 2.439 4.034 19 
Total % 100.000% 100.000% 100.000%  

Total number  430  41  471  
  

 Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 1.569 3.000 0.666 
  
 

Water Clarity Other 90% of 
samples 

Upper 10% of 
samples Total % Total number 

clear  77.979%  46.341%  74.941%  320 
cloudy  20.725  41.463  22.717  97 

dark  1.295  12.195  2.342  10 
Total %  100.000%  100.000%  100.000%  

Total number  386  41  427  
  

 Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 30.769 2.000 0.000 
  
 

Water Color Other 90% of samples Upper 10% of samples Total % Total number 
clear  55.764%  27.660%  52.619% 221 
light  18.231  19.149  18.333 77 

moderate  13.941  34.043  16.190 68 
dark  8.311  8.511  8.333 35 

turbid  3.753  10.638  4.524 19 
Total  100.000%  100.000%  100.000%  

Total number  373  47  420  
  

Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 21.078 4.000 0.000 
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Table 20. Cross-Tabulations of Sampling Area Characteristics Comparing Extreme Observations with Other 
Observations (cont.) 
 

Surface sheen Other 90% of 
samples 

Upper 10% of 
samples Total % Total number 

none  93.587%  90.909%  93.321%  517 
partial  4.609  3.636  4.513  25 
entire  1.804  5.455  2.166  12 
Total  100.000%  100.000%  100.000%  

Total number  499  55  554  
  

Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 3.191 2.000 0.203 
  
 

Sediment odor Other 90% of 
samples 

Upper 10% of 
samples Total % Total number 

none  66.940%  48.649%  65.261%  263 
other  2.186  2.703  2.233  9 

gasoline  14.481  24.324  15.385  62 
sewage  16.393  24.324  17.122  69 

Total  100.000%  100.000%  100.000%  
Total number  366  37  403  

  

Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 5.114 3.000 0.164 
  
 

Sediment color Other 90% of 
samples 

Upper 10% of 
samples Total % Total number 

light  15.877%  16.216%  15.909%  63 
medium  51.811  43.243  51.010  202 

dark  32.312  40.541  33.081  131 
Total  100.000%  100.000%  100.000%  

Total number  359  37  396  
  

Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 1.172 2.000 0.557 
  
 

Sediment texture Other 90% of 
samples 

Upper 10% of 
samples Total % Total number 

clay  13.774%  37.838%  16.000%  64 
silt  67.218  45.946  65.250  261 

sand  19.008  16.216  18.750  75 
Total  100.000%  100.000%  100.000%  

Total number  363  37  400  
  

Test statistic Value df Probability that groups 
are the same 

Pearson Chi-square 14.620 2.000 0.001 
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Table 21. Examination of Screening Criteria to Identify Potentially Problematic Manholes 
 
Characteristics % of 

targeted 
samples 
correct 

% of false 
positives (% of 
non-extreme 
sites included) 

% of false 
negatives (% of 
total extreme 
sites missed) 

Efficiency (rate of 
correct hits to total 
extremes to rate of hits 
to total observations) 

Clarity x color x texture 62% 38% 87% 6.0 
Color x land use x 
topography 

24 76 83 2.5 

Color x land use 26 74 62 2.5 
clarity 20 80 63 2.0 
color 17 83 43 1.7 
texture 22 78 77 2.2 
Land use 14 86 35 1.5 
topography 11 89 52 1.1 
 

 
 
Statistical Evaluation of a Water Treatment Control Device; the Upflow Filter 
Controlled Experiments 
Controlled sediment removal tests were also conducted for several media, different flow rates, and influent sediment 
concentrations. As shown in Figure 53, the percentage reductions for suspended solids for the mixed media tests 
and high influent concentrations (485 to 492 mg/L) were 84 to 94%, with effluent concentrations ranging from 31 to 
79 mg/L for flows ranging from 15 to 30 gal/min. During the low concentration tests (54 to 76 mg/L), the 
reductions ranged from 68 to 86 mg/L, with effluent concentrations ranging from 11 to 19 mg/L. The coarser bone 
char and activated carbon media tests had slightly poorer solids removal rates (62 to 79% during the highest flow 
tests), but with much higher flow rates (46 to 50 gal/min). At flows similar to the mixed media (21 to 28 gal/min), 
these coarser materials provided similar removals (about 79 to 88% for suspended solids). The flow rates therefore 
seemed to be more important in determining particulate solids capture than the media type. 
 
 

Performance Plot for Mixed Media on Suspended Soilds for Influent 
Concentrations of 500 mg/L, 250mg/L, 100 mg/L and 50 mg/L
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Figure 53. Performance plot for mixed media for suspended solids at influent concentrations of 500 mg/L, 
250 mg/L, 100 mg/L and 50 mg/L. 
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Actual Storm Event Monitoring 
Every storm evaluated had a hyetograph (rainfall pattern) and hydrograph (runoff pattern) prepared with the 
treatment flow capacity marked for that particular event. An example is shown in Figure 54. 
 

 

Figure 54. Hydrograph and hyetograph for Hurricane Katrina (August 29, 2005). 
 
 
 
Thirty-one separate rains occurred during the 10 month monitoring period from February 2 to November 21, 2005. 
The monitoring period started off unusually dry in the late winter to early summer months. However, the mid 
summer was notable for severe thunderstorms having peak rain intensities (5-min) of up to 4 inches per hour. The 
late summer was also notable for several hurricanes, including Hurricane Katrina on August 29, 2005 that delivered 
about 3 inches of rain over a 15 hour period, having peak rain intensities as high as 1 in/hr in the Tuscaloosa area. 
During the monitoring period, the treatment flow rates were observed to decrease with time, as expected. Figure 55 
relates the decreasing flow rate with rain depth. The filter was always greater than the specified 25 gpm treatment 
flow rate during the 10 month period. It is estimated that the 25 gpm treatment flow would be reached after about 30 
inches of rainfall (in an area having 0.9 acre of impervious surfaces), or after about 45,000 ft3 of runoff, or after 
about 160 lbs of suspended solids, was treated by the filter.  
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Figure 55. UpFloTM filter treatment rate with rain depth. 
 
 
These data indicate that the performance of the UpFloTM filter is dependent on influent concentrations. As an 
example, the following figures show the analyses for suspended solids. Figure 56 is a scatterplot of the observed 
influent concentrations vs. the effluent concentrations, while Figure 57 is a line plot that connects paired influent 
and effluent concentrations. These plots show generally large reductions in TSS concentrations for most events. 
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Figure 56. Scatterplot of observed influent and effluent suspended solids concentrations (filled symbols are 
events that had minor filter bypasses). 
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Figure 57. Paired influent and effluent suspended solids concentrations.  
 
 
The nonparametric sign test was also used to calculate the probability that the influent equals the effluent 
concentrations. For the TSS data, P < 0.01, indicating with >99% confidence that the influent does not equal the 
effluent concentrations. Therefore, the test was statistically significant at least at the α 0.05 level. 
 
These data were fitted to regression equations to predict the effluent concentrations from the influent conditions. In 
all cases, the data needed to be log-transformed in order to obtain proper residual behavior. For TSS, the following 
equation was found to be very significant, according to the ANOVA analyses: 
 
Effluent Suspended Solids, log mg/L = 0.730 * (Influent Suspended Solids, log mg/L) 
 
 
Regression Statistics on Observed Influent vs. Effluent Suspended Solids, log mg/L 

Multiple R 0.94 
R Square 0.89 
Adjusted R Square 0.85 
Standard Error 0.37 
Observations 24 

 
ANOVA 

  df SS MS F Significance F 
Regression 1 25.4 25.4 187 3.11E-12 
Residual 23 3.12 0.136   
Total 24 28.55       

 
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

X Variable 1* 0.730 0.053 13.7 1.56E-12 0.620 0.841 
* the intercept term was determined to be not significant during the initial analyses and was therefore eliminated from 
the model and the regression and ANOVA reanalyzed. 
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As indicated on the ANOVA analyses above, the intercept term was not significant when included in the model, so 
that term was removed, and the statistical test conducted again. The overall significance of the model is very good 
(F<<0.001), and the adjusted R2 term is 0.85. The P-value for the slope term of the equation is also highly 
significant (P<<0.001) and the 95% confidence limit of the calculated coefficient is relatively narrow (0.62 to 0.84). 
Figure 58 is a plot of the fitted equation along with the observed data, while Figure 59 contains the residual plots, 
all showing acceptable patterns. 
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 Figure 58. Fitted equation and data points for influent and effluent suspended solids. 
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Figure 59. Residual analyses of fitted equation for suspended solids influent vs. effluent. 
 
 
Confidence intervals of the influent vs. effluent plots are shown in Figure 60, while Figure 61 shows the confidence 
intervals for calculated percentage reduction values. As indicated in Figure 61, the TSS reductions would be >70% 
when influent concentrations exceeded about 80 mg/L, >80% when influent concentrations exceeded about 300 
mg/L, and >90% when influent concentrations exceeded about 1000 mg/L. 
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Figure 60. Predicted effluent concentrations for different influent concentrations, with 95% confidence limits.  
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Figure 61. Percentage reductions as a function of influent concentrations, with 95% confidence limits. 
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Tables 22 summarizes the expected mass balance of particulate material removed by the UpFlowTM filter during the 
sampling period, considering both the measurements from the automatic samplers (for suspended material <150 µm 
in size) and the larger material retained in the sump, assuming all the runoff was treated by the filter, with no 
bypass, and all material greater than about 250 µm would be retained in the filter and sump. The suspended solids 
removal rate is expected to be about 80%, while the removal rates for the other monitored constituents are expected 
to be about 72 to 84%, depending on their associations with the different particle sizes.  
 
 
Table 22. Calculated Mass Balance of Particulate Solids for Monitoring Period 

particle size 
range (µm) 

SS influent mass 
(kg) 

SS effluent 
mass (kg) SS removed (kg) % reduction 

0.45-3 9.3 2.8 6.6 70 
3-12 18.7 6.4 12.3 66 
12-30 22.4 7.7 14.7 66 
30-60 26.7 6.8 19.9 74 
60-120 4.6 1.8 2.9 61 
120-250 19.8 4.3 15.5 78 
250-425 11.5 0.0 11.5 100 
425-850 17.1 0.0 17.1 100 
850-2,000 10.5 0.0 10.5 100 
2,000-4,750 4.8 0.0 4.8 100 
>4,750 3.5 0.0 3.5 100 
sum 148.9 29.8 119.2 80 

 
 
Other Exploratory Data Methods used to Evaluate Stormwater Controls 
There are many other ways to present data from stormwater control practices. Several of these are shown in the 
following discussion. 
 
Figure 62 is a plot showing the TSS concentrations of influent water and after several stages of treatment in the 
multi-chambered treatment train (MCTT) (Pitt, et al. 1999). Even though the influent quality was highly variable, 
the effluent was quite consistent. The first event, with a high effluent, was associated with rinsing fine media that 
hadn’t been adequately cleaned. Table 24 is a listing of the TSS data for these MCTT tests (mg/L) for each of the 12 
events. The following discussion outlines a simple analysis protocol that examined this data. 
 
The first step in any analyses is to prepare several simple data plots. Figure 63 is a scatterplot of influent and 
effluent TSS observations. Except for the one high effluent observation, most of the effluent appears to be relatively 
constant and not affected by the influent conditions. If this was the case, a regression analysis with ANOVA would 
result in the slope term being insignificant and the intercept being significant. This would imply that there is no 
relationship between the influent and effluent TSS quality, and the effluent quality is constant for all conditions, a 
very favorable outcome. Figure 64 is the same plot, but with log transformations. In this case, there appears to be a 
positive trend between the influent and effluent, although slight. Figure 65 contains box and whisker plots of the 
influent and effluent TSS data, in actual and log space. Normal and log-normal probability plots of the influent and 
effluent MCTT TSS data are shown in Figure 66. These plots show reasonable parallel probability lines for the log-
normal plot. Figure 67 shows a log-normal probability plot of the influent TSS data and Anderson-Darling test 
results, indicating a good fit (after the one large effluent data value was removed as that was an unusual observation 
associated with the first test and media that was not completely washed). 
 
Figure 68 shows the data and the fitted regression line, with the 95% significance limits. The limits are very wide 
due to the few data observations (11 sets shown here). Table 23 shows the ANOVA results for the fitted regression 
line of this TSS MCTT data. This shows that the regression is not significant and that there is no significant 
relationship between the influent and effluent TSS observations. The effluent TSS can therefore best be described 
using a probability plot, as the little variability present cannot be adequately explained by the changing influent 
conditions. Far from being a problem with statistical analyses, this is the desired result from a control device: the 
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effluent quality is consistent and not related to influent conditions. Of course, the excellent quality of the effluent is 
also very important! 
 

 
 
Figure 62. Line plot and statistical summaries showing performance of MCTT for different 
treatment components (Pitt, et al. 1999). 
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Table 23. Total Suspended Solids Data for MCTT tests (mg/L) (Pitt, et al. 1999). 
STORM INLET OUTLET 
1 137 55 
2 7 3 
3 8 6 
4 38 8 
5 17 6 
6 16 4 
7 23 <2.5 
8 75 6 
9 77 <2.5 
10 41 5 
11 103 8 
12 41 <2.5 
 
 
 

 
Figure 63. Plot of influent and effluent MCTT TSS data (Pitt, et al. 1999). 
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Figure 64. Plot of influent and effluent MCTT TSS data, log transformed data (Pitt, et al. 1999). 
 
 

  
Figure 65. Box and whisker plots of influent and effluent TSS data for MCTT, in actual and log 
space. 
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Figure 66. Normal and log-normal probability plots of influent and effluent MCTT TSS data. 
 
 
 

 
Figure 67. Log probability plot of influent TSS data and Anderson-Darling test results. 
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Figure 68. Data and regression line, with 95% significance limits. 
 
 
 
Table 24. ANOVA Results for Regression Analysis of TSS MCTT Data. 
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Figure 69 is a comparison of two alternative upflow treatment schemes, comparing the benefits of a suitable sump 
(Johnson, et al. 2003). The benefit of the sump was much more obvious for turbidity than for total solids, although 
it still provided a significant improvement for all constituents.  
 

 
Figure 69. Comparisons of two alternative upflow treatment schemes (Johnson, et al. 2003). 
 
 
Evaluation of Bacteria Decay Coefficients for Fate Analyses 
A series of experiments were conducted to determine if sampling handling had a significant effect on measured 
microorganism values. Other tests were also conducted to identify and measure the fate mechanisms of there 
microorganisms. These example tests are summarized in the following discussion. 
 
Fate Mechanisms for Microorganisms 
Lake Tuscaloosa water samples containing total coliforms and E. coli were subjected to a series of simple laboratory 
tests to identify the effects of mixing and settling on the measured levels. Table 25 shows the results of the 
measured values for total coliforms over a several day period. One set of samples were rigorously mixed before 
100mL was withdrawn for IDEXX total coliform analyses, while the other samples were left carefully undisturbed, 
and the 100mL of sample was pipetted without stirring the sample. There was an obvious downward trend in 
bacteria counts (#/100mL) with time for mixed and quiescent samples, but the reduction in values appeared to be 
greater for the quiescent sample set. 
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Table 25. Total Coliform Observations after Several Days 
Time 
(day) 

Quiescent 
(MPN) 

Mixed 
(MPN) 

Difference 
(MPN) 

1 1413.6 1732.87 319.27 
2 517.2 1299.65 782.45 
3 727 727 0 
5 116.2 691 574.8 
6 54.6 517.2 462.6 
7 12.2 410.6 398.4 

 
 
 
The following analysis examined these differences to identify if they were significant. Figure 70 shows the 
probability plots for these two sets of data and Anderson-Darling test statistic (AD) indicates that they are not 
significantly different from normal probability plots (p values larger than 0.05, more samples would be needed to 
show that they are significantly different from a normal distribution). The standard deviations of both data sets are 
also similar. Figure 71 is a similar plot of the differences between the two data sets and also indicates a normal 
distribution.  
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Figure 70. Probability plot for total coliforms (MPN) in quiescent and mixed samples. 
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Figure 71. Probability plot of differences in total coliforms in mixed and quiescent samples (MPN). 
 
Since these are paired samples and the difference between the mixed and quiescent samples is normal, it is possible 
to use the t-test: 
 
Hypothesis: Let µ1 denote the mean MPN of total coliforms when the sample is in a mixed condition and let µ2 be 
the mean MPN of total coliforms when the sample is in a quiescent condition. 
 
HO : µ1= µ2 
Ha : µ1> µ2 
 
The test is performed at a significance level of 5% α = 0.05 
 
The results of the paired t-Test (using Minitab) are: 
 
Paired T-Test and CI: Mixed (MPN), Quiescent (MPN)  
 
Paired T for Mixed (MPN) - Quiescent (MPN) 
 
                   N      Mean      StDev    SE Mean 
 
Mixed (MPN)         6   896.387   512.440   209.203 
Quiescent (MPN)   6   473.467   541.461   221.050 
Difference          6   422.920   262.339   107.100 
 
95% CI for mean difference: (147.612, 698.228) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 3.95  P-Value = 0.011 
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As the P-value is less than the specified significance level we can infer that at 5% significance level the data 
provides sufficient evidence to conclude that the mean MPN (#/100 mL) of total coliforms is greater in mixed 
samples than in quiescent samples.  
 
A similar set of analyses was used to determine if mixing or quiescent settling had any effect on E. Coli (MPN) 
values (also measured using the IDEXX method of analyses). The following presents similar analyses as were 
shown above for total coliforms. Visually, although the E. coli values decrease significantly with time, the 
difference between the mixed and quiescent sample results are much smaller than for the total coliforms. 
 
Table 26. E. Coli Values for Mixed and Quiescent Conditions 
Time 
(Day) 

Quiescent 
(MPN) 

Mixed  
(MPN) 

Difference 
(MPN) 

0 52.8 46.5 -6.3
0.125 51.2 48.7 -2.5

0.25 37.9 45.7 7.8
0.5 35.9 37.3 1.4

1 32.7 27.8 -4.9
2 10.9 12.1 1.2
3 15.8 11.9 -3.9
5 3.1 2 -1.1
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Figure 72. Probability plot for E. Coli (MPN) in quiescent and mixed samples. 
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Figure 73. Probability plot of difference in mixed and quiescent sample E. Coli values (MPN).  
 
Again, since these are paired samples and the difference between the mixed and quiescent samples is normal it is 
possible to use a paired t-test. 
 
Hypothesis: Let µ1 denote the mean MPN of E. Coli when the sample is in mixed condition and let µ2 be the mean 
MPN of E. Coli when the sample is in quiescent system. 
 
HO : µ1= µ2 
Ha : µ1> µ2 
 
The test is performed at a significance level of 5% α = 0.05 
 
The results of the paired t-Test are 
 
Paired T-Test and CI: Mixed  (MPN), Quiescent (MPN)  
 
Paired T for Mixed  (MPN) - Quiescent (MPN) 
 
                   N       Mean      StDev    SE Mean 
 
Mixed  (MPN)       8    29.0000   18.3248    6.4788 
Quiescent (MPN)   8    30.0375   18.3764    6.4970 
Difference          8   -1.03750   4.50395   1.59239 
 
95% CI for mean difference: (-4.80289, 2.72789) 
T-Test of mean difference = 0 (vs not = 0): T-Value = -0.65  P-Value = 0.535 
As the P-value is greater than the specified significance level, there are not enough samples to show that there is a 
significant difference between the two sample sets at the 0.05 level.  
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Decay Rate Curves of Lake Microorganisms 
The above data allows calculations of the decay rates for the tested microorganisms to be directly calculated. 
Figures 74 through 76 are plots of the observed values for the different time periods. These can be used to 
determine the first order equation decay rates that are needed in bacteria fate modeling. Because of the difference in 
the decays from the mixed and quiescent samples, the effects of settling, separately from “dieoff” as a decay 
function can be quantified. 
 
 

Decay Curve for Total Coliform MPN (Mixed samples)
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Figure 74. Decay rate for total coliforms in mixed samples. 
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Therefore the decay rate for total coliforms in a mixed system for Lake Tuscaloosa is 0.3 per day, similar to the 
reported values in the literature. 
 

Decay Curve for Total Coliform MPN (Quiescent Samples)
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Figure 75. Decay rate for total coliforms in quiescent samples. 
 
 
 
From two points on the best fit line (800, 2day) and (48, 5day) 
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Therefore the decay rate for total coliforms in a quiescent system for Lake Tuscaloosa is 0.93 per day, substantially 
greater than usually reported. The difference between these decay rates (0.63/day) can be attributed to gravitational 
settling, while the mixed decay rate (0.3/day) can be attributed to dieoff. Using the settling component, much more 
accurate fate predictions can be made concerning coliform bacteria in Lake Tuscaloosa.  
 
The following plots are for E. coli decay rate calculations. Since there was no significant difference in the quiescent 
and mixed sample, settling was an important fate mechanism for E. Coli. and the total loss can be attributed to 
dieoff. 
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Decay Rate of E-Coli Quiescent and Mixed (MPN)
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Figure 76. Decay rate for E. coli in mixed and quiescent samples. 
 
From two points on the best fit line (900, 3day) and (500, 5day) 
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Therefore, the total decay rate for E. Coli in Lake Tuscaloosa is 0.58 per day, with very little attributed to 
gravitational settling. 
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Appendix A: Factorial Analyses Examples 
Examples of an Experimental Design using Factorial Analyses: Sediment Scour 
Introduction 
This detailed example of using factorial analyses to design an experiment was prepared by Humberto Avila, a Ph.D. 
student in Water Resources Engineering at the University of Alabama.  
 
Accumulation of sediment and potential subsequent scour is one of the sediment transport processes in a stormwater 
drainage system. Sediment can be captured in inlets and manholes during rainfall events. The accumulation rate, or 
sediment-retaining performance, depends on the size and geometry of the device, the flow rate, sediment size, and 
specific gravity of the sediment. In the same way, scour phenomenon includes all those parameters previously 
mentioned in addition to the water protection layer and the consolidation of the sediment bed due to the aging 
phenomenon. Once the runoff ceases, sediment consolidates in the settling chamber and two different phases of the 
new sediments are formed in the manhole: a new sediment layer on the top of the previously captured sediment and 
a water layer above the sediment to the elevation of the outlet. This scenario corresponds to the initial condition of 
the scour analysis, which is the subject of this experiment. 
 
The purpose of this experiment is to evaluate the importance of the parameters and their interactions on the 
phenomenon of scour or migration of sediment out of a conventional inlet catchbasin, an experimental design was 
performed and analyzed with 4 parameters which are flow rate, sediment size, water protection depth, and specific 
gravity. Each factor was evaluated at 2 levels. 
 
A 2-dimensional Computational Fluid Dynamic (CFD) model was implemented in Fluent 6.2, using the Eulerian 
multiphase model, with which is possible to include two phases: an upper layer of water and a submerged dense 
layer of sediment. The evaluation consists in determining the reduction of sediment mass from the chamber over the 
time under the effect of a submersible vertical water jet. 
 
Parameters 
Four (4) parameters were evaluated in this experiment: flow rate, sediment size, water protection depth, and specific 
gravity. Each factor was evaluated at 2 levels: flow rates at 1.6 L/s and 20.8 L/s (25 and 267 GPM), sediment 
diameter sizes at 50 µm and 500 µm, water protection depths at 0.2 m and 1.0 m above the sediment, and specific 
gravities at 1.5 and 2.5. 
 
Model and Response 
A 2-dimensional Computational Fluid Dynamic (CFD) model was implemented in Fluent 6.2 by using the Eulerian 
multiphase model, with which it is possible to include two phases: and upper layer of water and a submerged dense 
layer of sediment. The evaluation consists in determining the reduction of sediment mass into a chamber through 
time under the effect of a submersible vertical water jet. Figure A1 shows the general configuration of the 2-D CFD 
model implemented for this experiment. The figure shows the location of the inlet and outlet.  
  
Normally, the response or responses are selected before performing an experiment. In this case, the loss of sediment 
through the time was selected as the measurable response. However, after a preliminary analysis of the results, an 
the necessity of having only one value for the response, the loss of sediment after 1,000 sec of continuous flow (16 
min) was selected as the final response to be evaluated in the experimental analysis. Figure A2 shows the reduction 
of sediment mass over the time in the case ABC (flow rate at high, depth of water at high, diameter at high, and 
specific gravity at low). 
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Figure A1. General representation of a simulation. Inflow, and outflow directions are indicated by 
arrows. Upper layer of water in blue, and sediment layer in color scale. 

 

5 sec 600 sec (10 min) 

1,500 sec (25 min) 3,000 sec (50 min) 
Figure A2. Simulation of case ABC (flow rate at high, depth of water at high, diameter at high, and 
specific gravity at low) – Colors represent Volume Fraction of Sediment. 

 

Inflow jet 
Outflow 
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Experimental Design 
Considering that 4 factors at 2 levels each will be evaluated, a 2-level full factorial analysis for 4 factors is required; 
this is a 24 factorial analysis. The total number of runs is 24 = 16 runs, considering all four single factors and their 
interactions. Table A1 shows the experimental set up for a 24 factorial analysis. 
 
 

Treatment A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
l - - - - + + + + + + - - - - +
a + - - - - - - + + + + + + - -
b - + - - - + + - - + + + - + -
ab + + - - + - - - - + - - + + +
c - - + - + - + - + - + - + + -
ac + - + - - + - - + - - + - + +
bc - + + - - - + + - - - + + - +
abc + + - - + - - - - + - - + + +
d - - - + + + - + - - - + + + -
ad + - - + - - + + - - + - - + +
bd - + - + - + - - + - + - + - +
abd + + - + + - + - + - - + - - -
cd - - + + + - - - - + + + - - +
acd + - + + - + + - - + - - + - -
bcd - + + + - - - + + + - - - + -
abcd + + + + + + + + + + + + + + +  

Table A1. Coded design matrix for a full factorial of 4 factors each at 2 levels (24 design) 
 
A minimum of 3 replicates are required for this experiment to provide a 95% confidence in s) and 99.99% 
confidence in y) . However, considering that the experiment was performed by using a computational model, only 
one replicate was performed, which provides about 95% confidence in y) and requires a residual analysis to 
evaluate which factors affect the variances s) . 
 
Results 
After simulating all 16 scenarios for 3,600 sec, the reduction of sediment depth (sediment loss) was plotted as a 
function of the time. As previously mentioned, the analyzed response was the loss of sediment at 1,000 sec of 
continuous flow. The sediment depth is the inverse of the water protection depth; then if the water depth is 0.2 m, 
the sediment depth is 1.0 m; and if the water depth is 1.0 m, then the sediment depth is 0.2 m. Figure A3 shows the 
results obtained from the 2D-CFD model. 
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Figure A3. Experimental results from the 2D-CFD model – Sediment depth as a function of time 
 
The analysis of the results of the experiment consists of determining the significant factors that affect the response. 
The significant factors that affect the response are called “location factors” and need to be considered in the 
prediction equation. A residual analysis is necessary to evaluate if the assumptions of the model are appropriate. 
 
Location Factors and Prediction Equation 
 
The location factors can be determined by three methods: eye ball with half-effects, normal probability plot of the 
effects, and a regression analysis to determine the p-values.  
 
The first method is by eye ball, at which the half-effect of each factor is ranked and plotted to determine 
which factors have more effect than the others. This method is a first approach and may not be accurate 
when there is not substantial difference between half-effects; therefore, a more accurate method is 
required. 
 
 
The following steps are required to determine the half-effects of factor A: 
 
Determine the average of the low settings of factor A: 
 
Avg Y @ -1 = (0.0831+0.0444+0.0018+0.0002+0.0011+0+0+0)/8 = 0.0163 
 
 
Determine the average of the high settings of factor A: 
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Avg Y @ +1 = (0.9835+0.7465+0.2186+0.1324+0.4655+0.0293+0.0667+0)/8 = 0.3303 
 
Determine the effect �: 
 
∆ = (Avg Y @ +1) – (Avg Y @ -1) = 0.3303-0.0163 = 0.3140 
 
Determine the half-effect D/2: 
 
∆/2 = 0.3140/2 = 0.1570 
 
The same procedure is done for the other factors. 
 

Additionally, the grand mean (Ygrand or y ) is calculated as the average of all the responses: 
 
Y(grand)=0.0831+0.0444+0.0018+0.0002+0.0011+0+0+0.9835+0.7465+0.2186+0.1324+0.4655+0.0293
+0.0667+0)/16 = 0.1733 
 
Table A2 shows the results of the effects and half-effects. 
 

 
Table A2. Analysis of effects (∆) for a 24 design 

 
Figure A4 shows the half-effect of each factor ranked from the maximum to the minimum. In the figure it is 
possible to see that factors A (flow rate), However, it is not clear wheatear the other factors are significant or not. 
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Figure A4. Pareto diagram of coefficients (half-effects) for the prediction equation 

 
 

The second method is plotting a normal probability plot using the effects calculated in Table A2. Figure A5 shows 
that factors A, C, B, AC, and AB have a significant effect. The normal probability line should pass over the four, 
and three-way interactions which are more expected to be no significant. 
 
To create the normal probability plot it is necessary to rank the effects from the smallest to the largest, and calculate 

the probability of each effect by using
( )

n
ipi

5.0−
= , where i = a specific rank, and n = maximum rank. Then, the 

Z-score with a distribution N (0, 1) is calculated for each effect using the probability p previously calculated; use 
NORMINV(pi, 0, 1) in Excel to calculate Z-score. 
 
Visually, it is possible to detect that factor A, and interactions AC and AB are the farther from the normal 
probability line, and that factors B, and C do not look as far as AC and AB. However, if a higher order term is 
included in the model (an interaction), then all linear effects included in the higher order term need to be included in 
the model regardless of their significance; this is knows as the hierarchy law. For example, if the interaction AB is 
significant but not A and B, the prediction equation has to include A, B, and AB. 
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Figure A5. Normal probability plot of effects 

 
The third method is the determination of the p-value for each factor using ANOVA. However, considering that this 
is a factorial experiment without replicates, it is not possible to calculate the error sum of squares (SSE) which is 
based on the standard deviation calculated from the replicates. Then, it is reasonable to assume that the higher-order 
interactions (four and three-way interactions) are no significant in the model, and then the sum of square of those 
interactions can be used like SSE. The methodology to calculate the p-values is the following: 

 
1. Calculate the sum of square of each factor (each factor has 1 degree of freedom).  

Sum of square of each factor 2

4
∆=

NMSB  (only for 2-level designs) 

 where  
 
 MSB = The Mean Square Between for each factor 
 N = total number of response values obtained in the entire experiment 
 ∆ = effect of each factor. 

 
2. Calculate the Mean Square Error (MSE) adding the MSB of the four and three-way 

interactions (ABC, BCD, ABD, ACD, and ABCD) and dividing by the degrees of freedom 
which is 5 (one for each interaction).  

 
3. Calculate F statistics for main effects and interactions by dividing the sum of square by 

the mean square error F=MSB/MSE. 
 

4. Calculate the p-value of each factor using the F-statistic and the following degrees of 
freedom: dfMSB= 1 for 2-level design, and dfMSE= 5 (number of degrees of freedoms used 
to calculate MSE). 

 
5. Identify the significant factors at significant levels α = 5% or α = 10%. A significant level 

of α = 5% was used for this example. 
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Table A3. ANOVA – calculation of p-values 
  Effect MSB F p-value 
A 0.314 0.395 29.79 0.0028 
B -0.206 0.170 12.83 0.0158 
C -0.242 0.234 17.63 0.0085 
D -0.109 0.047 3.56 0.1179 
AB -0.174 0.121 9.14 0.0293 
AC -0.210 0.176 13.31 0.0148 
AD -0.098 0.039 2.91 0.1486 
BC 0.134 0.072 5.45 0.0668 
BD -0.017 0.001 0.09 0.7738 
CD 0.070 0.019 1.47 0.2799 
ABC 0.103 0.043 3.22 0.1329 
ABD -0.027 0.003 0.22 0.6554 
ACD 0.060 0.014 1.09 0.3436 
BCD 0.023 0.002 0.16 0.7070 
ABCD 0.032 0.004 0.31 0.6029 

Sum. Three and four-way 
interactions 0.066   

MSE 0.0132   
 
According to Table A3, the significant factors and interactions that affect the response are A, B, C, AB, and AC. 
Those factors and interactions have to be in the prediction equation. The prediction equation can be written in terms 
of the grand mean and half-effects, excluding the no-significant factors. 
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where, 
 
y) = predicted response (Y pred) 

y  = grand mean (Y grand) 

⎟
⎠
⎞

⎜
⎝
⎛ ∆

2
= half-effects of each factor or interaction. 

 
The prediction equation is given as  

 
y) = 0.1733+0.157A-0.1030B-0.1209C-0.1050AC 

 
 
 
 
 
Residual Analysis  
In order to check the assumptions of the linear model presented previously, it is necessary to evaluate the trend, the 
homoscedastic, independence, and normality of the residuals. 
 
Residual is defined as the difference between the observed and predicted values,  
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predobs yye −= , 
where  
 
yobs = observed responses 
ypreds = predicted responses 
 
 
Trend and homoscedastic of the residual is evaluated by plotting the residuals as a function of the fitted or 
predicted values. If the plot shows no substantial trend curve, and the vertical spread does not vary too much along 
the horizontal length of the plot, with the exception of the edges (homoscedastic), it is possible, but not certain, that 
the assumption of the linear model is appropriate (Navidi 2006). If the previous conditions do not apply to the plot, 
the linear model is not appropriate. 
 
Figure A6 shows that there is not trend and the plot looks homoscedastic. However, considering that there are only 
few points, it is not possible to have a clear visual impression of homoscedastic or heteroscedastic. Therefore, the 
linear model should be considered as tentative (Navidi 2006). 
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Figure A6. Residuals versus fitted values 
 
Independence is evaluated by plotting the residuals as a function of the order of observation. This evaluation gives 
an idea about how the response varies over time, so it may be necessary to include the variable time into the model. 
 
Considering that the response was based on computational results, it would not be necessary to evaluate this 
parameter. Additional analysis (not included in this experiment) performed with the variation of scour over the time 
shows that there is an evident dependency of the time and the results at 60 sec are different than the results at 1,000 
sec for example. However, this analysis was focused only on the time 1,000 sec, so the dependency is not 
applicable. 
 
Normality of the residuals is analyzed by plotting a normal probability plot of the residuals. If the plot looks 
straight, the residuals are normally distributed. Figure A7 shows that the residuals look pretty normal.  
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Normal probability plot of residuals
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Figure A7. Normal probability plot of residuals 
 
 
Finally, a comparison between the actual and the predicted response is showed in Figure A8. The figure shows that 
most of the predicted responses are close to the actual values with the exception of two values that are unpredicted 
by about 20%. 
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Figure A8. Comparison between Actual and Predicted Response 
 
 
Example using Factorial Analyses to Evaluate Existing Data: Lake Tuscaloosa Water Quality 
Introduction 
This example was prepared by Tom Creech, a MS student in Biological Sciences at the University of Alabama as 
part of his thesis research. This analysis was conducted to better understand the processes which might be 
controlling the fate of wastewater and metals in the Lake Tuscaloosa reservoir, the main water supply to 
Tuscaloosa, AL, region. The data was obtained during December 2002 and January, 2003, and the basic 
relationships are summarized in the following discussion. 
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The data show that in the absence of extended periods of heavy rain, there is a clustering of sample locations by 
land cover (developed or undeveloped). After a period of heavy rain in February, the sample locations become less 
saline by dilution and generally enriched in dissolved iron to some degree. The clustering of sample locations by 
land cover is less distinct after periods of rain, probably based on the degree of surface water input. 
 
Salinity is influenced by the water’s source. Rainfall has extremely low Na. Groundwater has elevated Na due to 
rock weathering reactions. Wastewater has elevated Na due to detergents and human waste. Iron is a minor nutrient 
that participates in biological processes. It also precipitates from solution, depending on the concentration of total 
dissolved solids and oxidation-reduction conditions. Rainfall has extremely low Fe. Groundwater receives dissolved 
Fe from rock weathering reactions and decay of organic matter. Wastewater can have elevated Fe and it does 
contain elevated levels of other nutrients.  
 
Therefore, there are several possible processes involved in determining the water quality in the lake. These are 
examined by grouping the undeveloped sample locations before heavy rainfall as a reference in Figure A9. The 
grouping of developed sites before rainfall exhibit elevated sodium and depleted iron, relative to the undeveloped 
sites. The high sodium values are suggestive of groundwater and wastewater sources. A variety of nutrients are 
associated with wastewater, and may be stimulating the biological activity. The iron depletion can be associated 
with increased biological activity, along with iron precipitation due to elevated TDS, and differences in the 
availability of an initial source of iron. 
 

Fe vs. Na, Same sites before
and after extended rain
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Figure A9. Clustering of sampling locations by sodium and iron concentrations during dry and 
wet weather. 
 
The samples collected after rainfall are enriched in iron and depleted in sodium relative to the undeveloped, pre-rain 
samples. The depletion in sodium reflects dilution of the lake by rainwater. However, the relative enrichment of iron 



 

141 

 

is more curious. It is possible that since lower TDS (and therefore, salinity) favors iron solubility instead of 
precipitation, more dissolved iron was observed despite changes in source (rainfall vs. groundwater +/-wastewater). 
The dilution and cloudy conditions may have also lowered the lake’s productivity, and thus the demand for iron as a 
nutrient. 
 
Experimental Design for Lake Tuscaloosa 
To gain a better understanding of these and other relationships, a sample collection strategy was developed that will 
enable the data to be analyzed in a 23 full-factor statistical test. The factorial design will compare land cover, season, 
and lake stage (as an indication of incoming dilution flow, specifically from precipitation), as follows: 
 
 Land cover:    (+) developed  (-) undeveloped 
 Stage:   (+) high   (-) low 
 Season:   (+) summer  (-) winter 
  
These three factors are likely to be primary controls over the water chemistry at a given location. Samples have been 
collected from 20 locations during the first winter, during both low stage and high stage conditions. To complete 
such a factorial analysis, summer samples from low stage and high stage conditions are also needed. 
 
Experimental Design and Factorial Analysis for the North River site 
Because the data set cannot yet produce a complete factorial analysis, related historical data was examined. Water 
quality data was selected for the North River USGS gage station because the river is the principle tributary to Lake 
Tuscaloosa. To better understand the potential geochemical interactions involving dissolved iron, the following 23 
factorial test was conducted: 
 
 Discharge:  (+) less than median (-) greater than median  
 Season:   (+) winter  (-) summer 
 Conductivity:  (+) less than median (-) greater than median 
 
Of the historical data available, these factors likely offer the best opportunity to investigate differences in the source 
and fate of dissolved iron in this river. Table A4 summarizes the data used in this analysis.  
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Table A4. North River Water Quality Data used in 23 Factorial Analysis 

SAMPLE DATE  

DISCHARGE, 
CUBIC FEET 
PER 
SECOND

SPECIFIC 
CONDUCTANCE 
MICROSIEMENS/
CM AT 25 DEG C

IRON, 
DISSOLVED 
(UG/L AS 
FE)

8/22/1989 12 485 180
6/1/1995 95 382 20
8/2/1995 10 371 50
7/8/1986 38 305 330
2/2/1982 83 183 110

7/14/1987 50 171 250
6/1/1989 79 150 390
1/3/1984 149 143 170

11/1/1978 9.8 136 610
8/3/1979 23 126 240

6/30/1983 29 123 530
7/1/1980 47 121 350
1/4/1983 120 117 80

11/19/1987 148 111 260
6/30/1981 32 108 260
7/30/1980 31 107 420
6/29/1982 15 101 380

7/7/1979 56 100 470
1/1/1982 202 95 700

8/15/1978 54 95 580
1/7/1987 330 94 60
1/1/1981 167 92 370

5/27/1977 69 85 140
1/19/1977 63 85 60

7/4/1984 43 85 220
10/31/1981 289 84 230

1/3/1986 812 81 100
5/30/1979 247 81 220
5/13/1977 30 80 660

8/9/1988 76 77 350
6/1/1982 85 75 10
5/3/1979 243 71 110
6/7/1977 92 70 370
6/3/1980 91 70 110

11/30/1979 352 68 120
1/2/1985 757 67 230

1/31/1980 265 67 110
1/6/1979 401 65 120
7/5/1985 623 63 50

12/21/1988 1240 62 50
2/23/1990 2100 59 110
12/9/1978 338 57 200
2/19/1977 337 57 100

1/3/1980 402 56 80
1/31/1981 3860 49 170
4/30/1980 1020 48 70

2/7/1979 1290 43 80  
 
 
The results of the factorial analysis are summarized in Table A5, with the standard error calculations shown in 
Table A6.   
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Table A5. Results of 23 Factorial Analysis of North River Water Quality Data 
MEAN DISCHARGE= 381.5409 MEDIAN DISCHARGE= 95 I used 95 as a (+/-) boundary
MEAN CONDUCTIVITY= 95.06818 MEDIAN CONDUCTIVITY= 85 I used 90 as a (+/-) boundary
SEASONS= SUMMER(-) AND WINTER (+)

Table of Contrast Coefficients: (Means and Effects not rounded to significant digits)
Main Effects Two and Three factor interactions

condition mean season discharge conductivity sd sc dc sdc Fe microg/L (mean) N samples
1 + - - - + + + - 20.00 1
2 + + - - - - + + 273.33 6
3 + - + - - + - + 340.77 13
4 + + + - + - - - 360.00 2
5 + - - + + - - + 112.50 4
6 + + - + - + - - 130.77 13
7 + - + + - - + - 265.71 7
8 + + + + + + + + 60.00 1

effect: 195.39 21.28 122.47 -106.28 -114.52 -115.00 -81.25 2.53
First case error: 75 150 150 150 150 150 150 150 (see calculated effects table)

Second case error: 38 75 75 75 75 75 75 75 (see calculated effects table)
Third case error: 39 77 77 77 77 77 77 77 (see calculated effects table)  

Note: The second and third case error calculations were after the extreme values were eliminated. 
      
There are several large effects; however none of the effects are necessarily significant because they are all within 
the range of standard error (see first case error). However, flow is shown to have the largest effect on the measured 
water quality. The number of samples in a given population varied from 1 to 13. Within each sample population, 
there was a significant standard deviation (summarized below). This wide natural variation obscures the effects of 
the factors and factor interactions. The interdependence of the selected variables (season, discharge, and 
conductivity) further diminishes the effectiveness of this approach. Ideally, factors should be more independent of 
one another. The parameter being measured should be the main dependent variable. 
 
 
Table A6. Standard Error Calculations for North River Factorial Tests 
The standard error of the mean (for each condition's mean) is the standard deviation of the sample group divided by the square root of the sample size
The standard error of the main effects and factor interactions is calculated differently, and is shown in another table.

Summary table of individual yields for each condition: (Not yet rounded to significant digits)
condition 1 2 3 4 5 6 7 8

Fe microg/L: 20 60 50 110 50 50 10 60
80 180 610 70 80 110

170 240 110 80 140
260 250 220 100 220
370 260 100 354
700 330 110 370

350 110 660
380 120
390 120
420 170
470 200
530 230
580 230

Standard Dev. #DIV/0! 238.80 145.91 353.55 75.88 58.23 216.66 #DIV/0!
Square Root N 1.00 2.45 3.61 1.41 2.00 3.61 2.65 1.00
Standard Error N/A 97.49 40.47 250.00 37.94 16.15 81.89 N/A
Average (microg/L) 20.00 273.33 340.77 360.00 112.50 130.77 265.71 60.00  
 
 
Summary 
The following shows the effects and standard errors. As noted above, none of the factors were clearly significant 
based on the large errors, but the discharge effects seem to be most important. 
 
 
 
 



 

144 

 

 
 
 
Effect   Estimate +/- Standard Error  Probability (%) 
 
Average    195.39 +/- 75 
 
Main Effects 
 Season     21.28 +/- 150   21.42 
 Discharge  122.47 +/- 150     7.40 
 Conductivity            -106.28 +/- 150   64.29 
 
Two-Factor Interactions 
 S x D             -114.52 +/- 150   78.57 
 S x C             -115.00 +/- 150   92.66 
 D x C   -81.25 +/- 150   50.00 
 
Three-Factor Interaction 
 S x D x C    2.53 +/- 150   35.71 
 
 
A probability plot can also be used to identify significant factors and factor interactions. Outliers from the normal 
probability line indicate significant factors or factor interactions.  
 
The results can also be graphically displayed in the x,y,z coordinate system. Figure A10 shows the concentration of 
iron at each corner of the cube formed by the three factors studied. 
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Figure A10. 23 Factorial diagram showing observed iron concentrations. 
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The result shows that the diagonal between the 60 microgram/L concentration and the 20 microgram/L 
concentration is significant because the two values are much lower than the rest. A diagonal indicates that there is a 
significant two-factor interaction.  
 
 
Factorial Analysis used in Modeling the Fates of Polycyclic Aromatic Hydrocarbons (PAHs) 
Affecting Treatability of Stormwater 
Abstract 
This example of using a factorial analysis approach for fate modeling was prepared by Jejal Reddy, a Ph.D. student 
in the Department of Civil, Construction, and Environmental Engineering at the University of Alabama. The first 
part of this discussion examines the sensitivity of the different factors that affect the partitioning of PAHs 
commonly found in stormwater into different environmental phases using the fugacity calculation methods 
presented by Mackay, et al (1992). The predictions indicated that most of the PAHs are partitioned onto particulates 
than in the water or air phases. The second part of this discussion compares the predicted portioned values with 
actual stormwater PAH association values observed during prior research (Pitt, et al. 1999). Other than a few 
exceptions (Benzyl butyl phthalate, floranthene, and pyrene), the predicted percentages are in general agreement 
with the field measurements made by Pitt, at al. (1999). The third part of the discussion describes the effects of 
selected variables (temperature, PAH concentrations, suspended solids concentrations, and the organic fraction of 
the suspended solids) on partitioning of the PAHs by using a full 24 factorial experimental design (Box, et al. 1978). 
Concentrations of the PAHs and the concentrations of the suspended solids, and to a lesser extent the organic 
content of the suspended solids, were found to affect the partitioning of the PAHs into sediment matter. 
 
Introduction 
Polycyclic aromatic hydrocarbons (PAHs) are a major concern affecting public health and the natural environmental 
due to their carcinogenic and mutagenic properties. After the public drinking water act was implemented, PAH 
contributions from industrial sources were reduced, but expanding urbanization has increased the PAHs 
contribution from stormwater runoff. The increases in PAH concentrations in the environment is coincident with 
increases in reported automobile usage (Metre, et al. 2000). Stormwater runoff from impervious areas, along with 
wear and tear of vehicle tires and asphalt road surfaces, are responsible for much of the PAHs contributed to surface 
waters, especially associated with particulate matter. Due to their persistent organic pollutant (POP) nature, PAHs 
persist in the environment for long periods of time and accumulate to higher and higher concentrations with new 
discharges.  

  
When PAHs are present in stormwater, they are partitioned into different phases which affect their treatability and 
how they should be analyzed. Sorption plays an important role in the fate of these organic contaminates. Due to 
their extremely low solubility and their hydrophobic nature, most PAHs are predominantly associated with 
particulate matter. PAHs in urban runoff can occur in both particulate and soluble forms, although studies have 
identified the particulate forms as being the most predominate (Pitt, et al. 1999).  According to the Hwang and 
Foster study on urban stormwater runoff in Washington DC (2005), particulate-associated PAHs account for 68-
97% of total PAHs in the runoff. Fortunately, the organic contaminates associated with particulate matter can be 
more readily removed by common sedimentation stormwater control practices compared to filterable PAHs. The 
particulate-bound PAHs also tend to settle and accumulate in receiving water sediments. The behavior of 
contaminants in the environment depends primarily on their physical and chemical properties and the reactivity of 
the compound. The important properties of compounds that affect their treatability and fate include their partition 
coefficients, Henry’s law constant, and water solubility, amongst others. Examining the factors influencing the 
partitioning of the organic contaminants is very important in understanding the treatability of the organics and when 
conducting risk assessments associated with contaminated receiving waters.  
 
The first part of this discussion examines the sensitivity of the different factors that affect the partitioning of PAHs 
commonly found in stormwater into air, water, suspended solids, and sediment phases using the fugacity calculation 
methods presented by Mackay, et al (1992). Typical stormwater and urban receiving water conditions are used in 
these calculations. The second part of this paper compares the predicted portioned values with actual stormwater 
PAH association values observed during prior research (Pitt, et al. 1999). The third part of the discussion describes 
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the effects of selected variables on partitioning of PAHs using a full 24 factorial experimental design (Box, et al. 
1978).  

 
Methodology 
The fugacity models described by Mackay, et al. (1992) are methods used to determine the partitioning of a 
chemical contaminant into solid, liquid, and gaseous phases once they are released into the environment. Fugacity is 
defined as the escaping tendency of a chemical substance from a phase. To study the partitioning behavior of PAHs 
in the environment, Mackay’s level I calculations (which do not consider bioaccumulation rates or kinetics) were 
used as a preliminary assessment. The level I fugacity model describes the partitioning of the chemical contaminant 
into solid, liquid and gaseous phases once they are released into the environment, and assume equilibrium 
conditions. This model is based on the physical-chemical properties of the chemical contaminant and the media. 
These properties include temperature, flows and accumulations of air, water and solid matter. The composition of 
the media is also an important property of the media. The physical-chemical properties of the contaminant chemical 
include the partition coefficients, Henry’s law constant, and solubility of the contaminant. Equations involved in the 
model calculations are shown below:  

 

                          fZC *=  (or)  ( )∑
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ii ZV
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Where, C = Concentration of contaminant, mol/m3; Z = fugacity capacity constant, mol/m3; f = fugacity, Pa; Vi = 
Volume of the corresponding phases; and Zi = fugacity capacities of each phase for air, water, sediment, and 
suspended sediment for i  =1, 2, 3, and 4 respectively and are defined as follows. 
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Where, R = gas constant (8.314 J/mol K); T = absolute temperature (K); H= Henry’s law constant (Pa.m3/mol); KOC 
= Organic-water partition coefficient; P3 = density of sediment (kg/m3); P4 = density of suspended sediment (kg/m3); 
Ø3= organic fraction of sediment; and Ø4= organic fraction of suspended sediment. 
 
Pitt, et al. (1999) conducted analytic research considering more than thirty organic contaminants commonly found 
in stormwater runoff. They analyzed more than 100 samples collected from different sources areas in and around 
Birmingham, AL. The source areas represented by the samples included roofs, parking areas, storage areas, streets, 
loading docks, and vehicle service areas, plus nearby urban creeks, in residential, commercial, industrial and mixed 
land use areas. Among all the organic contaminants analyzed, polycyclic aromatic hydrocarbons were detected most 
frequently. The concentrations of organics detected varied considerably among the different source areas. Roof 
runoff, vehicle servicing areas, and parking areas were found to have the largest concentrations of organic toxicants 
in collected runoff. The fugacity model predicted partition values were compared to actual monitored partition PAH 
values obtained by Pitt, et al. (1999). Table A10 shows the concentrations and percentage of selected PAHs 
portioned in water and suspended solids from this prior research.  

  
The final part of this paper examines the effects of some selected environmental factors on the partitioning of the 
PAHs into different media using a full 24 factorial experimental design (Box, et al. 1978). The full factorial design 
experimental setup used is helpful in studying the effects of individual variables and also the effects of interactions 
of the variables. The design matrix used in this factorial study is shown in Table A7.  The factors studied, and their 
low and high values used in the calculations, are shown in Table A8. The low and high values of the factors were 
chosen based on typical observations for stormwater and urban receiving waters.  
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Table A7.  24 Factorial Design (Box, et al. 1978)    

 
(A, B, C, D are factors to be studied, + High value, - Low value, combinations of A, B, C, D indicates factors 
interactions) 
 

 
Table A8. Values used in Factorial Analysis.  

Variable Low value High value 

Temperature (A), oC 5 25 

Concentration of Contaminant (B), µg/L 10 300 

Concentration of Suspended Solids(C), mg/L 10 500 

Organic Fraction of Suspended Solids (D)  0.05 0.2 

 
 
 

Results 
The predicted partition values, as percentages, are shown in Table A9. The values indicate, as expected, that most of 
the PAHs are partitioned more onto the sediment than in the other phases. The low molecular weight PAHs (having 
fewer carbon rings) are mostly partitioned into the water phase compared to those having higher molecular weights. 
Figures A11 and A12 show the relationships between the logKow and the logKoc values of the PAHs and their 
partitioning into water and sediment phases, respectively. PAHs with logKow  or logKoc values greater than 4 are 
mostly partitioned onto sediment compared to other phases.  
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Table A9. Predicted PAH Partition Values 
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               Figure A11. logKow versus % partition of PAHs into water phase. 

 
 
 
 

% partitioning into different phases at 
equilibrium  

Contaminant 
 

Log 
Kow Koc 

H 
(Pa-M3/Mole) Air water Sed-

iment 
Sus. 
Sed. 

Bis(2-chloroethyl) ether 1.39 23 1.31 0 98 2 0 

1,3-Dichlorobenzene 3.49 310 192.5 0 77 23 0 

Bis(chloroisopropyl) ether 2.58 73 11.14 0 93 7 0 

Hexachloroethane 4.28 1175000 253.3 0 0 98 2 

Naphthalene 3.51 1300 46.61 0 44 55 1 

Phenanthrene 4.52 23000 25.93 0 4 94 2 

Anthracene 4.34 26000 1.79 0 4 94 2 

Benzyl butyl phthalate 4.78 85687 0.132 0 1 97 2 

Fluoranthene 5.22 59500 1712 0 2 96 2 

Pyrene 5.32 73350 1.89 0 1 97 2 

Benzo(a)anthracene 5.91 333261 0.067 0 0 98 2 

Chrysene 5.71 210273 0 0 0 97 2 

Benzo(b)fluoranthene 6.57 1200000 1.21 0 0 98 2 

Benzo(k)fluoranthene 6.45 1100000 105.47 0 0 98 2 

Benzo(a) pyrene 6.06 980000 0.24 0 0 98 2 

Benzo(g,h,I) perylene 7.1 5161594 0.01 0 0 98 2 
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                 Figure A12. LogKoc versus % partition of PAHs into sediment phase. 

 
 

 
Tables A10 and A11 indicate the percentage partitioning of the PAHs into the different phases, as observed by Pitt, 
et al. (1999), and the model-predicted values, respectively. Figure A13 is a plot showing the relationships between 
the observed and predicted partitioning. The comparison of predicted and observed values showed that the predicted 
percentages are in general agreement with the field measurements.  Benzyl butyl phthalate, floranthene, and pyrene 
show somewhat higher observed percentages of partitioning onto suspended solids compared to the model-predicted 
values. Variations in concentrations of PAHs associated with particulate matter depend on the source areas, as 
shown by Mahler, et al. (2005). They found that particulate bond PAHs in runoff from coal-tar sealed parking areas 
was 65 times higher than found from un-sealed parking areas. Similarly, Pitt, et al. (1999) observed high 
concentrations of organics from vehicle servicing area compared to all other source areas monitored.  

 
 

Table A10. Percentage partitioning of selected PAHs observed by Pitt, et al. 1999 
Amount of contaminants (µg/L) % Association 

Contaminant 
Non-filtered 

Filtered       
(in water 
phase) 

In Suspended 
Solids phase Water Sus –

Solids 

   Benzyl butyl phthalate 73 2 71 3 97 
   Fluoranthene 28 7 21 25 75 
   Pyrene 31 2 29 8 92 
   Benzo(a)anthracene 32 0 32 0 100 
   Benzo(b)fluoranthene 61 0 61 0 100 

Benzo(k)fluoranthene 47 0 47 0 100 
   Benzo(a)pyrene 70 0 70 0 100 

Benzo(g,h,I) perylene 20 0 20 0 100 
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Table A11. Predicted % Partition of Selected PAHs 
% Partitioning 

Contaminant 
Air Water Suspended Solids 

   Benzyl butyl phthalate 0 37 63 
   Fluoranthene 0 45 54 
   Pyrene 0 40 60 
   Benzo(a)anthracene 0 13 87 
   Chrysene 0 19 81 
   Benzo(b)fluoranthene 0 4 96 
   Benzo(k)fluoranthene 0 4 96 
   Benzo(a)pyrene 0 5 95 
   Benzo(g,h,I) perylene 0 1 99 

   
 
 

0

20

40

60

80

100

0 20 40 60 80 100
% oberved

%
 P

re
di

ct
ed

 
Figure A13. Comparison of predicted values versus observed values. 
 
The analysis of the effects of environmental factors on partitioning of PAHs indicated that the main variables which 
affect PAH partitioning onto suspended sediment were the concentrations of the PAH compounds and the 
concentrations of the suspended solids. The organic content of the suspended solids also affected the partitioning of 
the PAHs into suspended solids, but to a lesser extent. In the case of partitioning into the water phase, the 
concentration of the PAHs was found to have the greatest positive effect, and the concentration of the suspended 
solids had a significant negative effect (the higher the SS concentration, more of the PAHs were associated with the 
sediment). Figures A14 and A15 are probability plots indicating the significant factors affecting anthracene 
partitioning into the water phase and suspended sediment phase, respectively. Indicated factors, B is concentration 
of contaminant, C is concentration of suspended solids and D is organic fraction of suspended Solids. The term BC 
indicates the interaction of factors B and C. 
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Figure A14. Probability plot to identify important factors affecting Anthracene partitioning into the 
water phase. 
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Figure A15. Probability plot to identify important factors affecting Anthracene partitioning into 
suspended sediment phase. 
 
Conclusions 
The fugacity level 1 calculations were performed for selected environmentally important PAH contaminants. The 
model-predicted values show that the contaminants are more likely to be associated with the solid phase (mostly 
with sediment) and less with other phases. There is a clear similarity between predicted and actual observations 
when compared to prior research (Pitt, et al. 1999) in identifying the most important media for PAH associations in 
the environment. The field measurements showed a greater percentage of PAHs associated with particulate matter 
than the percentage predicted by the fugacity model. This may be due to the variable properties of the suspended 
solids, or the conditions of the environment.  
 
The factorial analysis identified concentrations of suspended solids, the concentration of the contaminant, and their 
interaction, as major factors affecting the PAH partitioning onto suspended matter. The identified behavior of PAHs 
association with suspended particulates helps in identifying better treatment options for the control of PAH 
contamination from stormwater. As modeling and field results shows, PAHs are mostly associated with particulate 
matter in water systems. The most common method currently used by analytical laboratories to analyze PAHs is 
solid phase extraction (SPE). This method is not reliable as the true recovery of PAHs from particulates using SPE 
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procedures is very poor. The use of continuous extraction using separation funnels and multiple solvents has been 
shown by Pitt, et al. (1999) to be much more suitable for samples containing significant amounts of PAHs 
associated with particulates. Unfortunately, that is a tedious process. Current research at the University of Alabama 
is developing and testing a more reliable and quicker method for the analysis of PAHs associated with different 
particle sizes, using a sequential procedure focusing on thermal desoprtion for the particulate-bound PAHs, and SPE 
for the filterable PAH forms. 
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Appendix B: Examples for Specific Statistical Tests 
 
Probability Plot Preparation using Excel 
 
Excel can be used to prepare probability plots, but it takes several steps, as shown in the following examples: 
 
 C D E F 
 rank value p Z 

7 
1 

45.5878
6 0.02381 -1.98075

8 
2 

46.8340
5 

0.07142
9 -1.46523

9 
3 

47.2413
3 

0.11904
8 -1.17976

10 
4 

47.7358
8 

0.16666
7 -0.96742

11 
5 

49.4814
6 

0.21428
6 -0.79164

12 
6 

50.6825
7 

0.26190
5 -0.63748

13 
7 

51.4490
5 

0.30952
4 -0.4972

14 
8 

52.0580
5 

0.35714
3 -0.36611

15 
9 

52.5684
3 

0.40476
2 -0.24104

16 
10 

57.9105
8 

0.45238
1 -0.11965

17 
11 

59.0166
4 0.5 -1.4E-16

18 
12 

59.5010
2 

0.54761
9

0.11964
8

19 
13 

59.6059
1 

0.59523
8 0.24104

20 
14 

59.8476
4 

0.64285
7

0.36610
6

21 
15 60.6413 

0.69047
6

0.49720
1

22 
16 

61.1086
6 

0.73809
5

0.63748
4

23 
17 

63.0009
3 

0.78571
4

0.79163
9

24 
18 

63.2458
2 

0.83333
3

0.96742
2

25 
19 64.2746 

0.88095
2

1.17976
1

26 
20 

66.5883
3 

0.92857
1

1.46523
4

27 
21 

67.4906
2 0.97619

1.98075
2

 
 
To calculate the p values (in column E for the example):  
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=+(C7-0.5)/$C$27 
 
The total number of samples is in row C27, the largest rank. 
 
This is for row 7 and the actual sorted values are in column D (not used) and the ranks are in column C. The Z 
scores are then calculated for each observation: 
 
=+NORMINV(E7,0,1) 
 
The mean of the distribution is 0 and the standard deviation is 1 for this example. 
 
Again for row 7, with the Z scores in column F and the probability values in column E. The Z scores are plotted on 
the X-axis and the actual data values are plotted on the Y-axis: 

y = 6.7825x + 56.47
R2 = 0.9413
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In this case, a first-order polynomial regression was fitted to the probability plots. This enables “eye-balling” that 
data fit (the data should be on a “straight” line if normally distributed), but the regression information does not 
present any statistical significance for normality. Many statistical programs offer tests to verify if the data is 
normally distributed. The Anderson-Darling is one such test. In that case, the data are compared to corresponding 
points on the fitted normal probability line and a paired test indicates if they are from the same population. A values 
of <0.05 indicates that they are significantly different, and data is not normally distributed. These plots and tests can 
also be conducted on log-transformed data to check for log-normalcy. The following example compares regular and 
log-transformed data: 
 
 
 
 

A B C D 

1 rank 
Conductivity 

(uS/cm @25ºC) p Z 
2 1 7 0.00266 -2178.9

3 2 14
0.00797

9 -1820.87

4 3 24
0.01329

8 -1638.14
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5 4 25
0.01861

7 -1510.73

6 5 27
0.02393

6 -1411.35

7 6 28.9
0.02925

5 -1329.1

8 7 32.8
0.03457

4 -1258.46

9 8 33.8
0.03989

4 -1196.26

10 9 35
0.04521

3 -1140.48

11 10 35.9
0.05053

2 -1089.75

12 11 36.9
0.05585

1 -1043.11
13 12 37.2 0.06117 -999.853

14 13 39
0.06648

9 -959.446

15 14 39.4
0.07180

9 -921.469

16 15 39.8
0.07712

8 -885.592

17 16 39.9
0.08244

7 -851.55

18 17 40.2
0.08776

6 -819.123

19 18 41.6
0.09308

5 -788.131

20 19 43
0.09840

4 -758.421

21 20 45
0.10372

3 -729.866

22 21 45
0.10904

3 -702.354

23 22 45.3
0.11436

2 -675.79

24 23 45.8
0.11968

1 -650.093
25 24 46 0.125 -625.188

26 25 47
0.13031

9 -601.014

27 26 47
0.13563

8 -577.513

28 27 47.2
0.14095

7 -554.635

29 28 49
0.14627

7 -532.335

30 29 50
0.15159

6 -510.574

31 30 50
0.15691

5 -489.314

32 31 50.4
0.16223

4 -468.524
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33 32 51.4
0.16755

3 -448.172

34 33 52
0.17287

2 -428.233

35 34 53
0.17819

1 -408.681

36 35 54.3
0.18351

1 -389.494
37 36 55 0.18883 -370.65

38 37 56
0.19414

9 -352.131

39 38 58
0.19946

8 -333.918

40 39 59
0.20478

7 -315.995

41 40 60
0.21010

6 -298.347

42 41 60.1
0.21542

6 -280.96

43 42 60.8
0.22074

5 -263.82

44 43 64.2
0.22606

4 -246.914

45 44 65
0.23138

3 -230.233

46 45 65.5
0.23670

2 -213.763

47 46 66
0.24202

1 -197.496
48 47 67.7 0.24734 -181.422
49 48 68 0.25266 -165.532

50 49 69
0.25797

9 -149.817

51 50 69
0.26329

8 -134.269

52 51 69.2
0.26861

7 -118.881

53 52 70.4
0.27393

6 -103.645

54 53 70.5
0.27925

5 -88.5545

55 54 71
0.28457

4 -73.6032

56 55 72
0.28989

4 -58.7848

57 56 74.9
0.29521

3 -44.0934

58 57 75.6
0.30053

2 -29.5233

59 58 76.6
0.30585

1 -15.0693
60 59 77 0.31117 -0.7261

61 60 78
0.31648

9
13.5111

2
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62 61 78.8
0.32180

9
27.6470

9

63 62 80
0.32712

8
41.6863

4

64 63 80
0.33244

7 55.6332

65 64 80
0.33776

6
69.4918

7

66 65 80.65
0.34308

5
83.2663

5

67 66 83
0.34840

4
96.9605

5

68 67 84.7
0.35372

3
110.578

2

69 68 85
0.35904

3
124.122

9

70 69 85
0.36436

2
137.598

2

71 70 86
0.36968

1
151.007

5

72 71 86 0.375
164.354

1

73 72 87
0.38031

9
177.641

2

74 73 88
0.38563

8
190.871

8

75 74 88
0.39095

7 204.049

76 75 91
0.39627

7
217.175

8

77 76 92.6
0.40159

6 230.255

78 77 96
0.40691

5
243.289

5

79 78 99
0.41223

4
256.281

9

80 79 99.6
0.41755

3
269.235

1

81 80 100
0.42287

2
282.151

5

82 81 103
0.42819

1
295.033

8

83 82 110
0.43351

1
307.884

6

84 83 110 0.43883
320.706

3

85 84 110
0.44414

9
333.501

4

86 85 112
0.44946

8
346.272

3

87 86 114
0.45478

7
359.021

5

88 87 115
0.46010

6
371.751

2
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89 88 117
0.46542

6
384.463

9

90 89 118
0.47074

5
397.161

8

91 90 123
0.47606

4
409.847

2

92 91 140
0.48138

3
422.522

5

93 92 144
0.48670

2
435.189

8

94 93 145
0.49202

1
447.851

6

95 94 146 0.49734
460.509

9

96 95 150 0.50266
473.167

2

97 96 150
0.50797

9
485.825

5

98 97 157
0.51329

8
498.487

3

99 98 160
0.51861

7
511.154

7

100 99 160
0.52393

6
523.829

9

101 100 160
0.52925

5
536.515

4

102 101 166
0.53457

4
549.213

3

103 102 167
0.53989

4
561.925

9

104 103 170
0.54521

3
574.655

6

105 104 172
0.55053

2
587.404

8

106 105 178
0.55585

1
600.175

7

107 106 190 0.56117
612.970

8

108 107 196
0.56648

9
625.792

5

109 108 197
0.57180

9
638.643

3

110 109 200
0.57712

8
651.525

6

111 110 200
0.58244

7
664.442

1

112 111 201
0.58776

6
677.395

2

113 112 210
0.59308

5
690.387

7

114 113 210
0.59840

4
703.422

1

115 114 213
0.60372

3
716.501

3
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116 115 217
0.60904

3
729.628

1

117 116 220
0.61436

2
742.805

4

118 117 222
0.61968

1 756.036
119 118 225 0.625 769.323

120 119 230
0.63031

9
782.669

6

121 120 230
0.63563

8
796.078

9

122 121 230
0.64095

7
809.554

2

123 122 240
0.64627

7
823.098

9

124 123 245
0.65159

6
836.716

6

125 124 250
0.65691

5
850.410

8

126 125 260
0.66223

4
864.185

3

127 126 260
0.66755

3
878.043

9

128 127 262
0.67287

2
891.990

8

129 128 280
0.67819

1 906.03

130 129 300
0.68351

1 920.166

131 130 310 0.68883
934.403

2

132 131 337
0.69414

9
948.746

4

133 132 338
0.69946

8
963.200

4

134 133 350
0.70478

7
977.770

5

135 134 360
0.71010

6
992.461

9

136 135 370
0.71542

6 1007.28

137 136 370
0.72074

5
1022.23

2

138 137 370
0.72606

4
1037.32

2

139 138 370
0.73138

3
1052.55

8

140 139 379
0.73670

2
1067.94

6

141 140 386
0.74202

1
1083.49

4

142 141 390 0.74734
1099.20

9
143 142 419 0.75266 1115.1
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144 143 420
0.75797

9
1131.17

4

145 144 451
0.76329

8
1147.44

1

146 145 465
0.76861

7 1163.91

147 146 472
0.77393

6
1180.59

2

148 147 501
0.77925

5
1197.49

7

149 148 510
0.78457

4
1214.63

7

150 149 512
0.78989

4
1232.02

4

151 150 538
0.79521

3
1249.67

2

152 151 541
0.80053

2
1267.59

5

153 152 565
0.80585

1
1285.80

8

154 153 572 0.81117
1304.32

7

155 154 620
0.81648

9
1323.17

1

156 155 621
0.82180

9
1342.35

8

157 156 636
0.82712

8 1361.91

158 157 706
0.83244

7 1381.85

159 158 724
0.83776

6
1402.20

1

160 159 781
0.84308

5
1422.99

1

161 160 792
0.84840

4
1444.25

1

162 161 795
0.85372

3
1466.01

2

163 162 829
0.85904

3
1488.31

2

164 163 830
0.86436

2 1511.19

165 164 830
0.86968

1
1534.69

1

166 165 874 0.875
1558.86

6

167 166 990
0.88031

9 1583.77

168 167 1010
0.88563

8
1609.46

8

169 168 1010
0.89095

7
1636.03

1

170 169 1030
0.89627

7
1663.54

3
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171 170 1250
0.90159

6
1692.09

8

172 171 1340
0.90691

5
1721.80

8

173 172 1490
0.91223

4 1752.8

174 173 1502
0.91755

3
1785.22

7

175 174 1502
0.92287

2
1819.26

9

176 175 1507
0.92819

1
1855.14

6

177 176 1576
0.93351

1
1893.12

3
178 177 1597 0.93883 1933.53

179 178 1635
0.94414

9
1976.78

5

180 179 1720
0.94946

8
2023.42

3

181 180 2180
0.95478

7
2074.15

3

182 181 2420
0.96010

6
2129.93

9

183 182 2580
0.96542

6 2192.14

184 183 2820
0.97074

5
2262.77

5

185 184 3200
0.97606

4
2345.02

9

186 185 4350
0.98138

3 2444.41

187 186 4440
0.98670

2
2571.81

7

188 187 5320
0.99202

1
2754.54

5
189 

188 8150 0.99734
3112.57

9
190 mean 466.8385638   
191 stdev 949.3003352   

 
Calculation of probability values (cell C2): 
 
=(A2-0.5)/$A$189 
 
The total number of observations is in cell A189 (the highest rank) 
 
The Z scores are calculated (cell D2): 
 
=NORMINV(C2,$B$190,$B$191) 
 
The mean value is in B190 and the standard deviation is in cell B191. 
 
 
Plot of data without transformations: 
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Plotting with the x-axis in log space, showing a much better bit to a straight line: 
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Comparisons of Two Sets of Data using Excel 
One of the most common statistical tests is to compare two sets of data. Excel can be used for some basic tests, 
using t-tests.  
 
Paired Tests: 
If data is collected in pairs, many confounding factors are hopefully eliminated, as it is assumed that similar 
unmeasured factors are affecting both sets of data in a similar manner. Paired sampling is therefore recommended, if 
possible, although seldom can it be assumed that all confusion is eliminated! Paired sampling usually is associated 
with treatment units, where simultaneously influent and effluent samples are taken, for example. The following 
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example shows how the basic paired (dependent) t-tests. For the t-test to be valid, the data must be normally 
distributed and the two data sets must have the same standard deviations. If not, either transformations can be used 
to obtain normal data (usually log transformations), or a non-parametric test should be used. 
 
station 
A 

station 
B 

23 34 
45 65 
67 54 
38 42 
58 63 
85 75 

104 85 
56 75 
34 46 
17 25 

paired data above 
 
 
t-Test: Paired Two Sample for Means  
   

  Variable 1 Variable 2 
Mean 52.7 56.4
Variance 744.4555556 381.8222222
Observations 10 10
Pearson Correlation 0.887012071  
Hypothesized Mean Difference 0  
df 9  
t Stat -0.870996873  
P(T<=t) one-tail 0.203194421  
t Critical one-tail 1.833113856  
P(T<=t) two-tail 0.406388842  
t Critical two-tail 2.262158887   

 
Again, the summary table shows the column statistics for each of the sampling sites (mean, variance, and number of 
observations), and the statistical tests for differences. Normally, a p value of 0.05, or less, is usually used to signify 
significant differences in the data sets. If the p value is not (as in this example), there is not sufficient data to show 
that they are different (the means are close together for the variance observed and many more data may be needed to 
be confident that a difference exists). It is not proper to say that they are from the same population if the p is large. 
Excel also shows p values for one-tail and for two-tail tests. A one-tailed test is applied if one of the two sets of data 
is assumed to be larger than the other before the test is conducted. A two-tailed test is used if only a difference is to 
be examined, with no prior hypothesis that a specific set is larger than the other. In this example, neither case 
resulted in a significant difference, requiring additional data. If a one-tail test is used (“easier” to prove a significant 
difference, as the resulting p value is smaller than the calculated two-tailed p value), this must be clearly stated as 
part of the experimental design. This would be an obvious hypothesis for a treatment system when the effluent is 
hypothesized to have lower concentrations than the untreated influent. 
 
Independent Tests: 
The following example is for an independent t-test, where the data was not collected as pairs. This would occur for 
seasonal samples for example, where different times are associated with the samples. Again, in this example, not 
enough samples have been collected to say they are from different populations with a 95% confidence.  
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station 
A 

station 
B 

23 43 
45 87 
72 45 

4 67 
79 24 
32 52 

 79 
 34 
 23 
 17 

 
t-Test: Two-Sample Assuming Independent 
Observations  
   

  Variable 1 Variable 2 
Mean 42.5 47.1
Variance 836.3 582.5444444
Observations 6 10
Hypothesized Mean Difference 0  
df 9  
t Stat -0.327207199  
P(T<=t) one-tail 0.375496691  
t Critical one-tail 1.833113856  
P(T<=t) two-tail 0.750993382  
t Critical two-tail 2.262158887   

 
 
 
Example of ANOVA using Excel 
ANOVA can be used to compare data from different sites, as in the following example. This is a one-way ANOVA 
that is comparing the variability within each site to the variability between the sites. This is an excellent tool to 
supplement grouped box and whisker plots that display the data graphically. The following example shows three to 
six replicate values from each of 5 sites. ANOVA requires that the replicated values are normally distributed, so 
probability plots should be prepared. One probability plot showing all five sets of data would be especially 
informative. If the probability lines are parallel, they would also have similar variabilities, another requirement of 
ANOVA. 
 
 
site a site b site c site d site e 

78 43 153 14 12
45 79 87 53 9
63 54 245 42 34
54  432 64 14
24  43 23  
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Anova: Single Factor       
       

SUMMARY       

Groups Count Sum Average Variance   
Column 1 5 264 52.8 407.7   
Column 2 3 176 58.66667 340.3333   
Column 3 6 1124 187.3333 19161.87   
Column 4 5 196 39.2 427.7   

Column 5 4 69 17.25 128.9167   

       
       

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 98255.39 4 24563.85 4.411859 0.011642 2.927749 
Within Groups 100218.4 18 5567.686    
       

Total 198473.7 22         
 
 
This ANOVA analysis from Excel summarizes the data from each column above the analysis of variance table. The 
P-value needs to be smaller than the critical values (usually considered to be 0.05). The F critical value shown on 
the ANOVA table is the F value that would result in a p-value equal to 0.05, so you want a calculated F value to be 
greater. The F is the ratio of the mean sum of squares (MS) of the “between group” and “within groups” values. The 
mean sum of squares is the sum of squares (SS) values divided by the degrees of freedom (df). 
 
In this case, the p-value is 0.012, much smaller than 0.05, so at least one site is significantly different from the other 
sites. Of course, this now begs the question of which one(s) are different from the others? A graphical grouped box 
and whiskers plot helps evaluate this. In addition, some statistical packages offer a Bonferroni t-test. This is simply 
a set of t-tests where each site is compared to each other site individually. In many cases, this will help distinguish 
the important groups, but it also usually results in some ambiguity, especially for many sites, and/or for 2-way 
ANOVAs. Also, since these are t-tests, the data must meet the t-test requirements (normally distributed, with each 
group having similar standard deviations), as does ANOVA. Transformations (usually using logs) may be helpful, 
then the ANOVA (and further tests) are conducted on the log values. 
 
Example Regression Analysis using Excel 
 

order of 
data 
collection x axis y axis 

1st order 
predicted 
value 

1 st order 
residuals 

2nd order 
predicted 
value 

2nd order 
residuals 

3 1 45 199.396 154.396 113.0488 68.0488 
7 3 73 201.448 128.448 117.6392 44.6392 
2 7 105 205.552 100.552 126.7912 21.7912 
8 34 180 233.254 53.254 187.5628 7.5628 
9 75 253 275.32 22.32 276.5 23.5 
1 105 573 306.1 -266.9 339.02 -233.98 
5 368 733 575.938 -157.062 794.6412 61.6412 
6 533 958 745.228 -212.772 995.7432 37.7432 
4 1094 1143 1320.814 177.814 1190.747 47.7468 

   sum: 0.05  78.6932 
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Conduct ANOVA for the regression. Things to consider: 
• Want a good R2 values, but it doesn’t end there (0.85 here, pretty good). 
• Examine statistical significance of the regression (Significance F), want it to be <0.05 (0.00057 here, excellent) 
• Examine statistical significance of intercept and X Variable 1 (P-value), want them to be <0.05 (0.03 and 0.00057 
here, fine). If the intercept is not significant, then eliminate it from the equation (force the equation thru zero) and 
redo the regression, only using the other (slope) terms.  
• Examine the 95% range of the coefficients. If zero is in the range, then question the need for the term. 
 
 

Regression Statistics        
Multiple R 0.913599785        
R Square 0.834664568        
Adjusted R Square 0.81104522        
Standard Error 179.9109753        

Observations 9        

         

ANOVA         

  df SS MS F Significance F    
Regression 1 1143824.509 1143824.5 35.33817 0.000573169    
Residual 7 226575.7131 32367.959      

Total 8 1370400.222          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 198.3675387 73.54501117 2.6972263 0.030762 24.46134607 372.27 24.46 372.27 

X Variable 1 1.025987456 0.172591741 5.9445918 0.000573 0.617873131 1.43 0.61 1.434 

         
         
         
RESIDUAL OUTPUT   PROBABILITY OUTPUT    

         

Observation Predicted Y Residuals  Percentile Y    
1 199.3935261 -154.3935261  5.555556 45    
2 201.445501 -128.445501  16.66667 73    
3 205.5494509 -100.5494509  27.77778 105    
4 233.2511122 -53.25111217  38.88889 180    
5 275.3165979 -22.31659786  50 253    
6 306.0962215 266.9037785  61.11111 573    
7 575.9309224 157.0690776  72.22222 733    
8 745.2188526 212.7811474  83.33333 958    

9 1320.797815 -177.7978154  94.44444 1143    
 
 
Then plot the data and the regression equation. Does it look “good”? In this case, there appears to be a bowing of 
the data compared to the first order polynomial regression: 
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scatter plot of data and 1st order equation

y = 1.026x + 198.37
R2 = 0.8347
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Plot the residuals to see if they form an undesired pattern. Want to be a random band centered about the zero 
residual value. In this case, they seem to have a distinct bow pattern (except for one data point). Therefore, consider 
higher order equation. 

1st order residuals vs predicted values
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Residuals by order. Want random pattern, with no obvious carryover or serial correlation between observations. 
This pattern looks OK. 
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1st order residuals by order
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Also prepare probability plot of residuals to show random nature of the values (approximate straight line) (plot not 
shown). 
 
 
 
The second order equation was then evaluated (ANOVA not shown). The data plot and regression line, plus 
residuals is shown below and look much better. 

scatter plot of data and 2nd order equation

y = -0.0012x2 + 2.3x + 110.75
R2 = 0.9515
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2nd order residuals vs predicted values
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2nr order residuals by order
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However, this regression example is still flawed. The X values are not evenly distributed; they indicate a bunching 
of low values (6 values are <200, while only 3 are between 200 and 1100). This is a common problem with many 
measurements where negative values are not possible and there is no physical limit to high values. In this case, log-
transforming the values may be a suitable solution, and the regression repeated using the log values in the regression 
instead of the actual values.  
 
Other Statistical Tests Available in Excel 
The above examples only show a few of the many statistical tests. With the “Data Analysis” selection (after adding 
the “Analysis ToolPak” under Add-Ins) under “Tools”, a long list of statistical tests is available, including: 
 

ANOVA (single factor, two-factor with replication, and two-factor without replication) 
Correlation 
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Covariance 
Descriptive Statistics 
Exponential Smoothing 
F-Test two-sample for variances 
Fourier analyses 
Histogram 
Moving average 
Random number generator 
Rank and percentile 
Regression 
Sampling 
t-test (paired two sample for means, two-sample assuming equal variances, and two-sampling assuming 
unequal variances) 
z-test (two sample for means) 

 
In addition to these, there are a number of low-cost statistical packages that can also be added to Excel for selected 
specialized analyses. However, it may be worthwhile to invest in a complete statistical package. While these can be 
expensive, their capabilities, especially when dealing with large datasets, can be important when a larger variety of 
tests needs to be considered. As an example nonparametric analyses, exploratory data analyses, extended graphical 
capabilities, and multivariate analyses, are all important tools when conducting environmental research.  
 
Wilcoxon Rank-Sum Test 
Attached tables from Lehmann, E.L. Nonparametrics; Statistical Methods based on Ranks. McGraw-Hill 1975 and 
from Conover, W.J. Practical Nonparametric Statistics, 2nd Edition. John Wiley and Sons, 1980. 
 
The Wilcoxon Rank-Sum test is suitable to compare two sets of independent data, with few restrictions. The two 
data sets, however, each have to be symmetrical. You should use the Sign Test when comparing paired data. These 
tests should only be used if more powerful tests cannot be used. Specifically, these tests are useful when non-
detects, or over-range, data are present. These non-parametric tests are based solely based on the ranks of the 
observed data, not their values. Multiple non detects (and over-range) values in any data set can be dealt with by 
calculating the average ranks: 
 

Example of handing ties using average ranks: 
Ranked Value Rank Rank (with 

averages for ties) 
<1 1 2 =(1+2+3)/3  
<1 2 2 
<1 3 2 
5.2 4 4 
30.5 5 5 
29.2 6 6 
161.6 7 7 
344.8 8 8 
488.2 9 9 
>2419.2 10 10.5 = (10+11)/2 
>2419.2 11 10.5 
Sum of ranks: 66 66 

 
 
The Wilcoxon Rank-Sum test is illustrated using the following E. coli data: 
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Roof - Birds Roof – no birds 
145.5 <1 
461.1 30.5 
18.7 2 
1413.6 5.2 
410.6 344.8 
>2419.2 161.6 
>2419.2 29.2 
2 <1 
<1 >2419.2 
517.2 6.3 
 2 

 
 
The first step is to sort all of the observations together (but remember which data belong to which data set): 
 
 

Rank Tied Ranks Roof - Birds Roof – no birds 
1 2 <1  
2 2  <1 
3 2  <1 
4 5  2 
5 5  2 
6 5 2  
7 7  5.2 
8 8  6.3 
9 9 18.7  
10 10  29.2 
11 11  30.5 
12 12 145.5  
13 13  161.6 
14 14  344.8 
15 15 410.6  
16 16 461.1  
17 17 517.2  
18 18 1413.6  
19 20 >2419.2  
20 20 >2419.2  
21 20  >2419.2 
Number of 
observations 

 10 11 

Sum of ranks  134 97 
 
 
The test statistic “a” is then calculated: 
 

( )1
2
1

+−== nnWWa rxy  

 
Where Wr is the largest sum of ranks (134 in this example) and n is the number of observations in the set having the 
largest sum of ranks (10 here). This tests that Wr, the largest sum of ranks, is < than the other sum.  
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In the tables, k1 is the number of observations in the smallest set (10 here) while k2 is the number of observations in 
the larger set (11 here). 
 
In an example of using the table, assume that k1 = 3 and k2 = 7 and that Wxy was calculated to be 16. In this 
example, P is seen to be 0.9083. The one-tail test is therefore P = 91% (marginally significant that the largest 
median value is greater than the smaller median value of the other data set, with an α= 1-0.983 = 0.092). For a two-
tailed test (testing for a difference, with no prior knowledge of one expected to be larger than the other), alpha = 
2(0.092) = 0.18 and P = 1-0.18 = 0.82, indicating that there was not a significant difference in the two medians. 
 
One should also check the sum of rank calculations: 
 

( ) ( ) 231
2
2221

2
1

==
+

=∑ NNranks  

 
where N = n + m = 21, the number of observations in both sets combined. 
 
The Conover tables (attached) can be used for data sets having as many as 20 elements each. However, they only 
show the critical test statistic values associated with the 0.001, 0.005, 0.01, 0.05, and 0.10 p values. These are also 
for 2-tailed tests (where one is testing for a difference, but it is not known in advance which is larger). For 1-tailed 
tests (when the larger one is a-priori known, then the p values should be halved). In the above example, the number 
of observations are 10 and 11, and the Wxy test statistic is 79. This corresponds closely to a p of 0.01 for a 2-tailed 
test, indicating a very high probability that they are different (significant results are usually indicated if the p is ≤ 
0.05). 
 
Conover (1980) Appendix A7 Table for Mann-Whitney Test statistic (same as Wilcoxon Rank-Sum test statistic): 
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The following Table B is from Lehmann (1975) for Wilcoxon Rank-Sum test statistics: 
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